IRREDUCIBLE MODULE HOMOMORPHISMS OF A VON NEUMANN ALGEBRA INTO ITS CENTER(1)

BY HERBERT HALPERN

1. Introduction. A von Neumann algebra \mathscr{A} can be considered as a module over its center \mathscr{Z} . The norm of \mathscr{A} induces a norm on the module \mathscr{A} . Whenever we talk of the module \mathscr{A} it will always be this specific module over \mathscr{Z} . In this article we study the set \mathscr{A}^{\sim} of bounded module homomorphisms of \mathscr{A} into \mathscr{Z} . In an earlier article we studied those module homomorphisms of \mathscr{A} into \mathscr{Z} which are continuous in the σ -weak topology of \mathscr{A} and \mathscr{Z} respectively. In that paper we discovered a specific form for such homomorphisms and showed that a type I algebra could be characterized in terms of such functionals. These results were analogues of results known for factor algebras. For factor algebras multipliers are scalars and the mappings are scalar-valued functionals while in algebras with arbitrary centers the multipliers are central elements and the mappings are module homomorphisms into the center.

There are always module homomorphisms of \mathscr{A} into \mathscr{Z} . A kind which is particularly simple although fundamental may be constructed as follows. Let \mathscr{Z}' be the commutator of \mathscr{Z} and let E be an abelian projection in \mathscr{Z}' with central support P. There is an isomorphism of $\mathscr{Z}P$ onto $E\mathscr{Z}'E$ given by $A \to AE$. For each A in \mathscr{A} we denote the inverse image in $\mathscr{Z}P$ of EAE under this isomorphism by $\tau_E(A)$. Then the function τ_E on \mathscr{A} is a homomorphism into \mathscr{Z} .

In general \mathscr{Z} is a most suitable range for module homomorphisms. The following Hahn-Banach type theorem illustrates this. Let \mathscr{B} be a normed space which is a module over a commutative AW^* -algebra \mathscr{Z} . Let \mathscr{C} be any submodule of \mathscr{B} and let ϕ be a bounded module homomorphism of \mathscr{C} into \mathscr{Z} . There is a bounded module homomorphism ψ of \mathscr{B} into \mathscr{Z} such that $\psi(C) = \phi(C)$ for every C in \mathscr{C} and such that $\|\psi\| = \|\phi\|$ [19], [24]. From this theorem many homomorphisms may be constructed.

A module homomorphism ϕ of \mathscr{A} into \mathscr{Z} will be called a functional of the module \mathscr{A} . A functional ϕ of the module \mathscr{A} is said to be hermitian if $\phi(A^*) = \phi(A)^*$ for every A in \mathscr{A} . Every bounded functional of the module A can be written as a linear combination of two bounded hermitian functionals. A functional ϕ of the module \mathscr{A} is said to be positive if ϕ maps \mathscr{A}^+ into \mathscr{Z}^+ . Since

$$|\phi(A)|^2 = \phi(A)^*\phi(A) \le \phi(A^*A)\phi(1),$$

every positive functional ϕ is bounded with bound $\|\phi(1)\|$. Every bounded hermitian

Received by the editors June 10, 1968.

⁽¹⁾ The research for this paper was partially supported by the National Science Foundation.

functional of the module \mathcal{A} may be written as the difference of two positive functionals of the module \mathcal{A} [19], [24].

In this paper we study the positive functionals of the module \mathscr{A} . The set \mathscr{S} of positive functionals of \mathscr{A}^{\sim} of norm not exceeding 1 is compact in a naturally defined topology in \mathscr{A}^{\sim} . The set \mathscr{S} has extreme points and \mathscr{S} is the closure (in this topology) of the convex hull of its extreme points. Here though the convexity is expressed in terms of multiplication by elements in \mathscr{Z} . We show that every linear functional f on \mathscr{A} which is σ -weakly continuous when restricted to \mathscr{Z} can be expressed as the composition of f with an element of \mathscr{A}^{\sim} .

A positive functional ϕ in \mathscr{A}^{\sim} normalized so that $\phi(1)=1$ gives rise to a representation of \mathscr{A} as a *-subalgebra of the algebra of all bounded linear operators on an AW^* -module M_{ϕ} over the center \mathscr{Z} ([6], [17], [28]). We study the representations that arise from an extreme point ϕ of \mathscr{S} . By presenting a specific form for the representation we are able to obtain the analogue of Kadison's theorem on strict irreducibility. If $A \to A^{\wedge}$ denotes the Gelfand transform of \mathscr{Z} onto the algebra of all continuous complex-valued functions on the spectrum Z of \mathscr{Z} , then the analogue of Kadison's theorem allows us to conclude that $A \to \phi(A)^{\wedge}(\zeta)$ is a pure state of \mathscr{A} for every ζ in \mathscr{Z} . In a certain sense this result illustrates the advantage of a global theory over a decomposition theory. By an additional construction we are able to find an extreme point ϕ such that the kernel of the canonical representation of \mathscr{A} on a Hilbert space induced by $A \to \phi(A)^{\wedge}(\zeta)$ (ζ fixed but arbitrary in Z) is the smallest closed two-sided ideal $[\zeta]$ in \mathscr{A} containing ζ . So $[\zeta]$ is a minimal primitive ideal of \mathscr{A} .

We then define a vector state of the $\mathscr A$ as a module. This definition comes from ideas in a previous paper [12]. The set of elements in $\mathscr A^{\sim}$ obtained as pointwise limits of these vector states is called the vector state space. The set of pointwise limits in $\mathscr A^{\sim}$ of the set of extreme points ϕ of the positive elements of the unit sphere of $\mathscr A^{\sim}$ which satisfy $\phi(1)=1$ is called the pure state space of the module $\mathscr A$. We then compare the set of all ϕ in the unit sphere of $\mathscr A^{\sim}$ such that $\phi(1)=1$ with the pure state space and the vector state space of the module $\mathscr A$. These structures have exactly the same relations as the corresponding structures of scalar functionals as given by Glimm ([3], [4]). Here the ideal of completely continuous operators is replaced by the ideal generated by the abelian projections of $\mathscr A$.

2. Existence of extreme points. Let $\mathscr A$ be a von Neumann algebra with center $\mathscr L$ and let $\mathscr A^{\sim}$ be the space of bounded functionals of the module $\mathscr A$. Let $\mathscr L_*$ be the set of all σ -weakly continuous functionals on $\mathscr L$. For each f in $\mathscr L_*$ and A in $\mathscr A$ define the seminorm $p_{f,A}=p$ of $\mathscr A^{\sim}$ by $p(\phi)=|f(\phi(A))|$. The family $\{p_{f,A}\mid f\in\mathscr L_*,\ A\in\mathscr A\}$ of seminorms of $\mathscr A^{\sim}$ defines a topology on $\mathscr A^{\sim}$ under which $\mathscr A^{\sim}$ is a locally convex Hausdorff topological linear space. We call this topology the weak-* topology of $\mathscr A^{\sim}$. If f is a weak-* continuous functional on $\mathscr A^{\sim}$, there are functionals f_1, f_2, \ldots, f_n in $\mathscr L_*$ and A_1, A_2, \ldots, A_n in $\mathscr L$ such that

$$f(\psi) = \sum \{f_j(\psi(A_j)) \mid 1 \le j \le n\}$$

for every $\psi \in \mathscr{A}^{\sim}$. Since every positive functional g in \mathscr{Z}_* is of the form g(A) = (Ax, x) for some vector x of the Hilbert space H of \mathscr{Z} , we have that there are vectors $x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_m$ in H and B_1, B_2, \ldots, B_m in \mathscr{Z} such that

$$f(\psi) = \sum \{ (\psi(B_j)x_j, y_j) \mid 1 \le j \le m \}.$$

PROPOSITION 2.1. Let \mathscr{A} be a von Neumann algebra. Let \mathscr{A}_{1}^{\sim} be the unit sphere of the set \mathscr{A}^{\sim} of bounded functionals of the module \mathscr{A} and let \mathscr{S} be the set of positive elements of \mathscr{A}_{1}^{\sim} . The sets \mathscr{A}_{1}^{\sim} and \mathscr{S} are compact in the weak-* topology of \mathscr{A}^{\sim} .

Proof. Let $\mathscr{Z}_A = \mathscr{Z}$ for every $A \in \mathscr{A}$. Let $\prod \{\mathscr{Z}_A \mid A \in \mathscr{A}\}$ be the product space of $\{\mathscr{Z}_A \mid A \in \mathscr{A}\}$ supplied with the product topology induced by the σ -weak topology on each \mathscr{Z}_A . Let Φ be a function of \mathscr{A}^{\sim} into $\prod \mathscr{Z}_A$ given by $\Phi(\phi)_A = \phi(A)$. The function Φ is an isomorphism of \mathscr{A}^{\sim} onto $\Phi(\mathscr{A}^{\sim})$ which is bicontinuous when \mathscr{A}^{\sim} is supplied with the weak-* topology. Let $\mathscr{N} = \prod \{\mathscr{N}_A \mid A \in \mathscr{A}\}$ be the subset of $\prod \mathscr{Z}_A$ defined by the relation

$$\mathcal{N}_A = \{ B \in \mathcal{Z}_A \mid ||B|| \leq ||A|| \}.$$

The set \mathscr{N} is compact in $\prod \mathscr{Z}_A$. Since $\|\Phi(\phi)_A\| \leq \|A\|$ whenever $\phi \in \mathscr{A}_1^{\sim}$, it is sufficient to show that $\Phi(\mathscr{A}_1^{\sim})$ is closed in \mathscr{N} in order to show \mathscr{A}_1^{\sim} is compact in the weak-* topology. Let $\{\psi_n\}$ be a net in \mathscr{A}_1^{\sim} such that $\{\Phi(\psi_n)\}$ converges to an element ρ in \mathscr{N} . Let f be an element of \mathscr{Z}_* , A_1 and A_2 be elements of \mathscr{A} , and C_1 and C_2 be elements of \mathscr{Z} . Since the nets

$$\{f(\psi_n(C_1A_1))\}, \{f(\psi_n(C_2A_2))\}\$$
and $\{f(\psi_n(C_1A_1+C_2A_2))\}$

converge to

$$f(C_1\rho_{A_1}), \quad f(C_2\rho_{A_2}) \text{ and } f(\rho_{(C_1A_1+C_2A_2)})$$

respectively, we have that

$$f(C_1\rho_{A_1} + C_2\rho_{A_2}) = f(\rho_{(C_1A_1 + C_2A_2)}).$$

Because f is arbitrary, we have that

$$C_1 \rho_{A_1} + C_2 \rho_{A_2} = \rho_{(C_1 A_1 + C_2 A_2)}.$$

Therefore, the function $A \to \rho_A$ is a module homomorphism ϕ of \mathscr{A} into \mathscr{Z} . But $\|\phi(A)\| \le \|A\|$ and therefore ϕ is an element of \mathscr{A}_1^{\sim} . This proves $\Phi(\mathscr{A}_1^{\sim})$ is closed in \mathscr{N} .

Now we show that $\mathscr S$ is weak-* compact in $\mathscr A^{\sim}$. Let $\{\psi_n\}$ be a net in $\mathscr S$ converging in the weak-* topology to a point ψ in $\mathscr A_{\widetilde{1}}$. But if A is a positive element of $\mathscr A$, then

$$f(\psi(A)) = \lim_{n} f(\psi_n(A)) \ge \lim_{n} \inf f(\psi_n(A)) \ge 0$$

for every positive σ -weakly continuous f functional of \mathscr{Z} . Thus $\psi(A) \ge 0$ for every

 $A \ge 0$. This proves that $\mathscr S$ is closed in $\mathscr A_{\widetilde{\mathbf 1}}$. So $\mathscr S$ is compact in the weak-* topology. Q.E.D.

Let \mathscr{A} be a von Neumann algebra with center \mathscr{Z} . The space \mathscr{A}^{\sim} of bounded functionals on the module \mathscr{A} is a locally convex linear topological space with the weak-* topology. A linear functional f on \mathscr{A}^{\sim} is said to be hermitian if $f(\phi)$ is real for every hermitian functional ϕ in \mathscr{A}^{\sim} . If \mathscr{K} is a nonvoid convex weak-* closed subset of \mathscr{A}^{\sim} and if ϕ is an element of the complement of \mathscr{K} , there is a weak-* continuous functional f of \mathscr{A}^{\sim} such that

lub {Re
$$f(\psi) \mid \psi \in \mathcal{K}$$
} < Re $f(\phi)$.

Here Re α denotes the real part of the number α . Suppose ϕ is hermitian and the elements of $\mathscr K$ are hermitian. Let $f(\psi) = \sum_j (\psi(A_j)x_j, y_j)$ where $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n$ are vectors of the Hilbert space of $\mathscr A$ and A_1, A_2, \ldots, A_n are elements of $\mathscr A$. Let $g(\psi) = \sum_j (\psi(A_j^*)y_j, x_j)$. The functional $h(\psi) = (f(\psi) + g(\psi))/2$ is a weak-* continuous hermitian functional on $\mathscr A$ which coincides with Re f on $\mathscr K \cup \{\phi\}$. This means that there is a weak-* continuous hermitian functional h of $\mathscr A$ such that

lub
$$\{h(\psi) \mid \psi \in \mathscr{K}\} < h(\phi)$$
.

Let \mathscr{Z} be a commutative von Neumann algebra and let Z be the spectrum of \mathscr{Z} . If C is an element of \mathscr{Z} whose Gelfand transform C^{\wedge} on Z has range contained in the open interval (0, 1), then C is said to lie strictly between 0 and 1. If C lies strictly between 0 and 1 we write 0 < C < 1. If M is a \mathscr{Z} -module, a subset \mathscr{K} of M will be called \mathscr{Z} -convex if CA + (1 - C)B is in \mathscr{K} whenever A and B are in \mathscr{K} and C is in \mathscr{Z} with $0 \le C \le 1$. A point A of a \mathscr{Z} -convex subset \mathscr{K} of M is said to be an extreme point of \mathscr{K} if CB + (1 - C)D = A implies B = D = A whenever B and D are elements of \mathscr{K} and C is an element of \mathscr{Z} strictly between 0 and 1.

Theorem 2.2. Let \mathscr{A} be a von Neumann algebra with center \mathscr{Z} and let \mathscr{S} be the set of positive functionals of norm not exceeding 1 of the module \mathscr{A} . If \mathscr{K} is a nonvoid \mathscr{Z} -convex weak-* compact subset of \mathscr{S} , then \mathscr{K} is the weak-* closure of the smallest \mathscr{Z} -convex subset of \mathscr{K} containing the extreme points of \mathscr{K} .

Proof. Let B be an element of \mathscr{A}^+ . The set $\{\phi(B) \mid \phi \in \mathscr{K}\}$ is a monotonely increasing net in \mathscr{Z}^+ which is bounded above. Let $B_0 = \text{lub}\{\phi(B) \mid \phi \in \mathscr{K}\}$. The \mathscr{Z} -convex set $S(B) = \{\phi \in \mathscr{K} \mid \phi(B) = B_0\}$ is nonvoid and contains an extreme point of \mathscr{K} . This was demonstrated in Theorem 7 [12] for an analogous situation and virtually the same demonstration applies here.

Let \mathscr{K}' be the weak-* closure of the smallest \mathscr{Z} -convex subset of \mathscr{K} containing the set of extreme points of \mathscr{K} . We show that $\mathscr{K}' = \mathscr{K}$ by arguing by contradiction. Suppose there is an element ϕ in the complement of \mathscr{K}' with respect to \mathscr{K} . There is a weak-* continuous hermitian functional f of \mathscr{A}^{\sim} such that

lub
$$\{f(\psi) \mid \psi \in \mathcal{K}'\} < f(\phi)$$
.

Let

$$T = \{ \theta \in \mathcal{K} \mid f(\theta) = \text{lub} \{ f(\psi) \mid \psi \in \mathcal{K} \} \}.$$

Since \mathscr{K} is a weak-* compact set and since f is weak-* continuous, the set T is a nonvoid weak-* compact subset of \mathscr{K} . We show that T is \mathscr{Z} -convex. Let P be a projection in \mathscr{Z} . We have that

$$(\psi(A)x, y) = (P\psi(A)x, y) + ((1-P)\psi(A)x, y)$$

for every $\psi \in \mathscr{A}^{\sim}$, $A \in \mathscr{A}$, and x and y in the Hilbert space of \mathscr{A} . Thus $f(\psi) = f(P\psi) + f((1-P)\psi)$ for every ψ in \mathscr{A}^{\sim} . Now let θ be an element of T. We have that $f(P\theta) = \text{lub}\{f(P\psi) \mid \psi \in \mathscr{K}\}$. Indeed, if there is a ψ in \mathscr{K} with $f(P\theta) < f(P\psi)$ we have that

$$f(P\psi + (1-P)\theta) = f(P\psi) + f((1-P)\theta) > f(P\theta) + f((1-P)\theta) = f(\theta).$$

However, the function at $P\psi+(1-P)\theta$ is an element of \mathcal{K} . We have reached a contradiction. So,

$$f(P\theta) = \text{lub} \{ f(P\psi) \mid \psi \in \mathcal{K} \}.$$

This means that $f(P\theta) = f(P\psi)$ for any two elements θ and ψ in T and any central projection P. Now let C be any element in \mathscr{Z}^+ . Let $\varepsilon > 0$ be given; let $\{P_j \mid 1 \le j \le n\}$ be mutually orthogonal projections of \mathscr{Z} and let $\{\alpha_j \mid 1 \le j \le m\}$ be nonnegative scalars such that $\|C - \sum \alpha_j P_j\| < \varepsilon$. If θ and ψ are elements of T, then

$$|f(C\theta) - f(C\psi)| \leq |f(C\theta) - f((\sum \alpha_j P_j)\theta)| + |f((\sum \alpha_j P_j)\psi) - f(C\psi)| \leq 2\varepsilon ||f||.$$

Since ε is arbitrary, we see that $f(C\theta) = f(C\psi)$. Thus the set T is \mathscr{Z} -convex. Now by the remarks made at the beginning of this proof we can conclude that T has an extreme point ϕ_0 . We show that ϕ_0 is an extreme point of \mathscr{X} . Indeed, let ϕ_1 and ϕ_2 be elements of \mathscr{X} such that $C\phi_1 + (1-C)\phi_2 = \phi_0$ for some central element C strictly between 0 and 1. Let D be a positive central element; let $\varepsilon > 0$ be given and let $\{P_j \mid 1 \le j \le n\}$ be mutually orthogonal central projections such that $\|D - \sum \alpha_j P_j\|$ $\le \varepsilon$ for suitable nonnegative scalars $\{\alpha_j \mid 1 \le j \le n\}$. Because

$$f(P_j\phi_0) = \text{lub}\{f(P_j\theta) \mid \theta \in \mathcal{K}\} \text{ for } j = 1, 2, ..., n$$

we have that

$$f((\sum \alpha_j P_j)\phi_1) = \sum \alpha_j f(P_j \phi_1) \leq \sum \alpha_j f(P_j \phi_0) = f((\sum \alpha_j P_j)\phi_0).$$

So we have that

$$f(D\phi_1) \leq f((\sum \alpha_j P_j)\phi_1) + \varepsilon \|f\| \leq f((\sum \alpha_j P_j)\phi_0) + \varepsilon \|f\| \leq f(D\phi_0) + 2\varepsilon \|f\|.$$

Since $\varepsilon > 0$ is arbitrary, we have that $f(D\phi_1) \le f(D\phi_0)$. So for every central projection Q we may conclude that

$$f(CQ\phi_0) = f(CQ\phi_1)$$
 and $f((1-C)Q\phi_0) = f((1-C)Q\phi_2)$,

since the sum of the two positive numbers

$$f(CQ\phi_0) - f(CQ\phi_1)$$
 and $f((1-C)Q\phi_0) - f((1-C)Q\phi_2)$

is zero. The elements C and 1-C are invertible in \mathscr{Z}^+ . Given $\varepsilon > 0$, there are mutually orthogonal central projections $\{Q_j \mid 1 \le j \le n\}$ and nonnegative numbers $\{\alpha_j \mid 1 \le j \le n\}$ such that $\|C^{-1} - \sum \alpha_j Q_j\| \le \varepsilon$. Therefore,

$$|f(\phi_{1})-f(\phi_{0})| \leq |f((1-(\sum \alpha_{j}Q_{j})C)\phi_{1})|+|f(((\sum \alpha_{j}Q_{j})C-1)\phi_{0})|$$

$$\leq 2||f|| ||1-(\sum \alpha_{j}Q_{j})C||$$

$$\leq 2||f|| ||C|| ||C^{-1}-\sum \alpha_{j}Q_{j}|| \leq 2||f|| ||C||\varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we have that $f(\phi_1) = f(\phi_0)$. Similarly we find that $f(\phi_2) = f(\phi_0)$. This proves that both ϕ_1 and ϕ_2 are elements of T. Because ϕ_0 is an extreme point of T, the element ϕ_0 is equal to ϕ_1 and ϕ_2 . Hence ϕ_0 is an extreme point of \mathscr{K} . However, ϕ_0 cannot be in the set \mathscr{K}' . This is a contradiction. Therefore, we must have that $\mathscr{K} = \mathscr{K}'$. Q.E.D.

In the final section of this paper we shall present some facts about the closure of the smallest \mathscr{Z} -convex subset of \mathscr{S} containing the extreme points of \mathscr{S} in the topology of pointwise convergence on \mathscr{S} where \mathscr{Z} is taken with the uniform topology.

Let \mathscr{A} be a von Neumann algebra with center \mathscr{Z} . A positive functional ϕ of the module \mathscr{A} is said to majorize a positive functional ψ if $\phi - \psi$ is a positive functional of the module \mathscr{A} . If ϕ majorizes ψ , we write $\phi \ge \psi$. A positive functional ϕ is said to be \mathscr{Z} -irreducible if given any positive functional ψ majorized by ϕ then there is a positive element C in \mathscr{Z} such that $C\phi = \psi$. In [12] we proved the following theorem:

Let \mathscr{A} be a von Neumann algebra with center \mathscr{Z} . Let \mathscr{S} be the set of all positive functionals of the module \mathscr{A} with norm not exceeding 1. Let $\phi \in \mathscr{S}$. The following are equivalent:

- (1) ϕ is an extreme point of \mathcal{S} ; and
- (2) $\phi(1)$ is a projection and ϕ is \mathscr{Z} -irreducible.
- 3. Functionals σ -weakly continuous on the center. In this section we examine the positive functionals of a von Neumann algebra which are σ -weakly continuous when restricted to the center.

If f is a positive functional on a C^* -algebra \mathscr{A} , let L_f be the closed left-ideal of \mathscr{A} given by

$$L_f = \{ A \in \mathcal{A} \mid f(A^*A) = 0 \}.$$

The space $\mathcal{A}-L_f$ is a prehilbert space with the inner product

$$(A-L_f, B-L_f) = f(B*A).$$

Let H(f) be the completion of $\mathscr{A} - L_f$. The representation π of \mathscr{A} on H(f) which extends the left multiplication of \mathscr{A} on $\mathscr{A} - L_f$ is called the canonical representation

of \mathscr{A} induced by f. There is a vector x in H(f) which is cyclic under $\pi(\mathscr{A})$ such that $(\pi(A)x, x) = f(A)$ for every A in \mathscr{A} .

THEOREM 3.1. Let f be a positive functional of a von Neumann algebra \mathscr{A} . Suppose that the restriction g of f to the center \mathscr{L} of \mathscr{A} is σ -weakly continuous. There is a unique positive functional ϕ of module \mathscr{A} such that $f=g\cdot \phi$ and such that $\phi(1)$ is equal to the support of g.

Proof. Let P be the support of g. Let π be the canonical representation of $\mathscr A$ on a Hilbert space H induced by f. Let x be an element of H cyclic under $\pi(\mathscr A)$ such that $f(A) = (\pi(A)x, x)$ for every A in $\mathscr A$. The representation π restricted to $\mathscr L$ is σ -weakly continuous. Indeed, let $\{A_n\}$ be a monotonely increasing net in $\mathscr L^+$ with least upper bound A. Then $\{(A_n - A)^*(A_n - A)\}$ converges σ -weakly to 0. So

$$\{g((A_n-A)^*(A_n-A))\}$$

converges to 0. This means that $\lim \pi(A_n - A)x = 0$. Therefore, $\lim \pi(A_n)Bx = \pi(A)Bx$ for every $B \in \pi(\mathscr{A})$. Since the net $\{\pi(A_n)\}$ is bounded, the net $\{\pi(A_n)\}$ converges strongly to $\pi(A)$. This proves π is σ -weakly continuous on \mathscr{L} . This shows that $\pi(\mathscr{L})$ is a von Neumann algebra on H [1, Chapter I, §3, Theorem 2, Corollary 2].

The algebra $\mathscr{Z}P$ is isomorphic to $\pi(\mathscr{Z})$ under the map π . Let π^{-1} denote the inverse of this map. Now let E be the abelian projection of the commutator $\pi(\mathscr{Z})'$ of $\pi(\mathscr{Z})$ on H corresponding to the subspace

closure
$$\{Ax \mid A \in \pi(\mathscr{Z})\}.$$

We have that

$$f(A) = (\pi(A)x, x) = (\tau_E(\pi(A))x, x)$$

for every A in \mathscr{A} . Then define $\phi(A) = \pi^{-1}(\tau_E(\pi(A)))$. We have that ϕ is a positive functional of the module \mathscr{A} such that $\phi(1) = P$. Also we see that

$$g(\phi(A)) = (\pi(\phi(A))x, x) = (\pi(A)x, x) = f(A)$$

for every A in \mathcal{A} .

Assume that ψ is a positive functional of the module \mathscr{A} such that $g \cdot \psi = f$. If $P\psi \neq \phi$, then there is an element A in \mathscr{A}^+ such that $P\psi(A) \neq \phi(A)$. There is a nonzero projection Q in $\mathscr{Z}P$ and an $\varepsilon > 0$ such that either

$$Q\psi(A) + \varepsilon Q \leq \phi(A)$$
 or $Q\phi(A) + \varepsilon Q \leq Q\psi(A)$.

However, we have that $g(Q\phi(A)) = g(Q\psi(A))$ and so $g(\varepsilon Q) = 0$ in either case. This means Q = 0. This is a contradiction. Therefore $P\psi = \phi$. Q.E.D.

A positive functional f of a C^* -algebra $\mathscr A$ with center $\mathscr Z$ is said to be centrally reducible if for every positive functional g of $\mathscr A$ majorized by f there is an element C in $\mathscr Z^+$ such that f(CA) = g(A) for every A in $\mathscr A$. These centrally reducible functionals have been the object of much study ([5], [8], [25], [26]). The next theorem concerns these functionals.

THEOREM 3.2. Let \mathscr{A} be a von Neumann algebra with center \mathscr{Z} . Let f be a positive functional on \mathscr{A} whose restriction g to the center \mathscr{Z} is σ -weakly continuous. The functional f is centrally reducible if and only if the unique positive functional ϕ of the module \mathscr{A} with $g \cdot \phi = f$ and with $\phi(1)$ equal to the support P of g is \mathscr{Z} -irreducible.

Proof. Suppose f is centrally reducible. Let ψ be a positive functional of the module $\mathscr A$ which is majorized by ϕ . Then $g \cdot \psi$ is majorized by $g \cdot \phi$. There is a C in $\mathscr Z^+$ with $g(C\phi(A)) = g(\psi(A))$ for every A in $\mathscr A$. By the same argument as contained in Theorem 3.1, we find that $C\phi(A) = P\psi(A)$ for every A in $\mathscr A$. Because $0 \le \psi(1-P) \le \phi(1-P) = 0$ we have that $P\psi = \psi$. Therefore $C\phi = \psi$. This proves ϕ is $\mathscr Z$ -irreducible.

Conversely, let ϕ be \mathscr{Z} -irreducible. Let h be a positive functional on \mathscr{A} majorized by f. The restriction of h to the center of \mathscr{A} is majorized by g. Therefore, h is weakly continuous on \mathscr{Z} . By the Radon-Nikodym theorem there is a positive element B in $\mathscr{Z}P$ such that g(BA)=h(A) for every A in \mathscr{Z} . There is by Theorem 3.1 a positive functional of the module \mathscr{A} such that $h\cdot\psi=h$. Thus $g(B\psi(A))=h(A)$ for every A in \mathscr{A} . Hence, for every A in \mathscr{A}^+ we find that $\phi(A)-B\psi(A)\geq 0$. This means that ϕ majorizes $B\psi$. There is a C in \mathscr{Z}^+ such that $C\phi=B\psi$. Thus we find that f(CA)=h(A) for every A in \mathscr{A} . This proves f is centrally reducible. Q.E.D.

Now let f be a positive functional of the von Neumann algebra with center \mathscr{Z} . Suppose the restriction g of f to \mathscr{Z} is weakly continuous. Let ν be the so-called spectral measure on the spectrum Z of \mathscr{Z} such that $g(A) = \int A^{\hat{}}(\zeta) d\nu(\zeta)$ for every $A \in \mathscr{Z}$. Here $A^{\hat{}}$ denotes the Gelfand transform of A. Let ϕ denote the unique positive functional of the module \mathscr{A} such that $\phi(1)$ is the support P of g and such that $f = g \cdot \phi$. Then $f(A) = \int \phi(A)^{\hat{}}(\zeta) d\nu(\zeta)$. We note that

- (1) $\{\zeta \in Z \mid P^{\hat{}}(\zeta) = 1\}$ is the support of the spectral measure ν ;
- (2) $f_t(A) = \phi(A)^{\hat{}}(\zeta)$ is a positive functional of $\mathscr A$ whose kernel contains $[\zeta]$;
- (3) for each fixed A in \mathscr{A} , the function $\zeta \to f_{\zeta}(A)$ is continuous on \mathscr{Z} . In §4 we shall show that
 - (4) f_t is irreducible if ϕ is \mathscr{Z} -irreducible.

If ν is a spectra measure and $\{f_{\zeta} \mid \zeta \in Z\}$ is a family of functions satisfying properties (1)–(3) (respectively, (1)–(4)) then the relation $f(A) = \int f_{\zeta}(A) d\nu(\zeta)$ defines a positive functional (respectively, a centrally reducible functional) which is weakly continuous on \mathscr{Z} [26].

4. Representations on AW^* -modules. In this section we study the representations induced by positive module homomorphisms. Our main result will be an analogue of Kadison's Theorem [13] on strictly irreducible representations.

Let \mathscr{A} be a von Neumann algebra. A positive functional ϕ of the module \mathscr{A} will be called a state (or expectation) of the module \mathscr{A} if $\phi(1)=1$. Then if ψ is a positive functional of the module \mathscr{A} , there is a state ϕ of the module \mathscr{A} such that $\psi=\psi(1)\phi$ [19], [24]. A state ϕ of the module \mathscr{A} is said to be a pure state if it is an extreme point of the set of positive functionals of norm not exceeding 1 of the module \mathscr{A} .

PROPOSITION 4.1. Let $\mathscr A$ be a von Neumann algebra. Let E be a projection in $\mathscr A$ and let P be the central support of E. There is a pure state of the module $\mathscr A$ such that $\phi(E) = P$.

Proof. Let \mathscr{Z} be the center of \mathscr{A} . The set \mathscr{K} of states ϕ of the module \mathscr{A} such that $\phi(E) = P$ is a \mathscr{Z} -convex weak*-compact subset of the set \mathscr{S} of positive functionals of norm not exceeding 1 of the module \mathscr{A} . The set \mathscr{K} is nonvoid. Indeed, let F_1 be an abelian projection in the commutator \mathscr{Z}' of \mathscr{Z} with central support P which is majorized by E. Let F_2 be an abelian projection in \mathscr{Z}' of central support 1-P. Then $F = F_1 + F_2$ is an abelian projection of central support 1. This means that τ_F restricted to \mathscr{A} is a state. Also $\tau_F(E) = P$, i.e. τ_F is an element of \mathscr{K} .

Let ϕ be an extreme point of \mathscr{K} (Theorem 2.2). We show ϕ is an extreme point of \mathscr{S} . Let ϕ_1 and ϕ_2 be two functionals in \mathscr{S} and let C be a central element strictly between 0 and 1 such that

$$C\phi_1 + (1-C)\phi_2 = \phi.$$

We have that $\phi_i(1) \le 1$ and thus, $\phi_i(E) \le \phi_i(P) \le P$ (j=1, 2). Therefore,

$$C\phi_1(1) + (1-C)\phi_2(1) = 1$$
 and $C\phi_1(E) + (1-C)\phi_2(E) = P$

imply that $\phi_1(1) = \phi_2(1) = 1$ and $\phi_1(E) = \phi_2(E) = P$. Thus, both ϕ_1 and ϕ_2 are elements of \mathcal{K} . Because ϕ is an extreme point of \mathcal{K} , we have that $\phi_1 = \phi_2 = \phi$. Q.E.D.

Let \mathscr{A} be a von Neumann algebra and let ϕ be a state of \mathscr{A} . Let

$$L_{\phi} = \{ A \in \mathscr{A} \mid \phi(A^*A) = 0 \}.$$

The factor set $\mathscr{A}-L_{\phi}$ is a module over \mathscr{Z} which is supplied with an inner product $(A-L_{\phi},B-L_{\phi})=\phi(B^*A)$ with values in \mathscr{Z} . The space $\mathscr{A}-L_{\phi}$ can then be embedded in a faithful AW^* -module M_{ϕ} over \mathscr{Z} obtained by completing $\mathscr{A}-L_{\phi}$ in the following way. The set M_{ϕ} is the norm completion of the set of all $\{A_n-L_{\phi},P_n\}_n$, where $\{P_n\}$ is a set of orthogonal central projections of sum 1 and $\{A_n-L_{\phi}\}$ is a set of elements of $\mathscr{A}-L_{\phi}$ with $\{\phi(A_n^*A_n)\}$ bounded in \mathscr{Z} , supplied with the norm induced by the inner product

$$\langle \{A_n-L_\phi,P_n\},\{B_m-L_\phi,Q_m\}\rangle = \sum_{m,n} \phi(B_m^*A_n)P_nQ_m.$$

There is a bounded homomorphism π_{ϕ} of \mathscr{A} , which is also a module homomorphism over \mathscr{Z} , into the algebra $L(M_{\phi})$ of all bounded module homomorphisms of M_{ϕ} onto itself that extends the left multiplication representation of \mathscr{A} on $\mathscr{A} - L_{\phi}$. This map π_{ϕ} is called the canonical representation of \mathscr{A} on M_{ϕ} induced by ϕ . For the operators T in $L(M_{\phi})$ an involution $T \to T^*$ of $L(M_{\phi})$ is defined. We have the relation $\langle TA, B \rangle = \langle A, T^*B \rangle$ for A and B in M_{ϕ} . The involution also satisfies the relation $\|T^*T\| = \|T\|^2$. Finally, the representation π_{ϕ} preserves adjoints in the sense that $\pi_{\phi}(A^*) = \pi_{\phi}(A)^*$ for every A in \mathscr{A} ([17], [6], [28]).

If \mathscr{Z} is a commutative von Neumann algebra on a Hilbert space H and if \mathscr{Z}' is the commutator of \mathscr{Z} on H, then for any abelian projection E of \mathscr{Z}' of central

support 1 the module $\mathscr{Z}'E$ is an AW^* -module over \mathscr{Z} . The inner product is defined to be $\langle A, B \rangle = \tau_E(B^*A)$ for A and B in $\mathscr{Z}'E$ [17].

A specific form for M_{ϕ} is now obtained.

PROPOSITION 4.2. Let \mathscr{A} be a von Neumann algebra with center \mathscr{L} and let ϕ be a state of the module \mathscr{A} . There is a Hilbert space H and a representation π of \mathscr{A} on H with the following properties:

- (1) π is faithful on \mathcal{Z} ;
- (2) $\pi(\mathcal{Z})$ is a von Neumann algebra on H;
- (3) there is an abelian projection E in the commutator $\pi(\mathcal{Z})'$ of $\pi(\mathcal{Z})$ on H such that $\pi(\phi(A)) = \tau_E(\pi(A))$; and
- (4) there is a function Φ of M_{ϕ} onto the completion of the module $\pi(\mathscr{A})E$ in $\pi(\mathscr{Z})'E$ such that

$$\Phi(A_1B_1 + A_2B_2) = \pi(A_1)\Phi(B_1) + \pi(A_2)\Phi(B_2)$$

for every A_1 and A_2 in \mathcal{Z} and every B_1 and B_2 in M_{ϕ} ;

$$\pi(\langle A, B \rangle) = \langle \Phi(A), \Phi(B) \rangle$$

for every A and B in M_{ϕ} ; and $\Phi(\pi_{\phi}(A)B) = \pi(A)\Phi(B)$ for every A in $\mathscr A$ and B in M_{ϕ} . If ϕ is a pure state of the module $\mathscr A$, then

(5) the commutator of $\pi(\mathcal{A})$ on H is equal to $\pi(\mathcal{Z})$.

Proof. Let $\{P_n\}$ be a set of nonzero mutually orthogonal projections of $\mathscr A$ with sum equal to 1 such that each algebra $\mathscr ZP_n$ is σ -finite. Let x_n be a unit vector of the Hilbert space of $\mathscr ZP_n$ which separates $\mathscr ZP_n$ [1, I, §2, No. 1]. Let π_n be the canonical representation of $\mathscr A$ on the Hilbert space H_n induced by the positive functional $w_{x_n} \cdot \phi$ of $\mathscr A$. Here $w_x(A) = (Ax, x)$ for any vector x. Let y_n be a vector in H_n cyclic under $\pi_n(A)$ such that

$$(\pi_n(A)y_n, y_n) = w_{x_n}(\phi(A)).$$

Let π be the representation $\pi = \sum \bigoplus \pi_n$ on the Hilbert space $H = \sum \bigoplus H_n$.

We show that π is faithful on \mathscr{Z} . Indeed, if $A \in \mathscr{Z}$ and $\pi(A) = 0$, then $\pi(AP_n) = 0$ for every n. This means $\pi_n(AP_n) = 0$. However, the representation π_n is faithful on $\mathscr{Z}P_n$; hence $AP_n = 0$ for every n. This means A = 0. Thus π is faithful on \mathscr{Z} .

We prove now that π is σ -weakly continuous when restricted to \mathscr{Z} . Let $\{A_m\}$ be a monotonely increasing net \mathscr{Z}^+ with least upper bound A. We have (Proposition 3.1) that $\{\pi_n(A_m)\}_m$ converges strongly to $\pi_n(A)$ for each n. Now let x be an element in H and let $\varepsilon > 0$ be given. There is a finite subset P_1, P_2, \ldots, P_k of $\{P_n\}$ of sum P such that $\|x - \pi(P)x\| \le \varepsilon$ because each $\pi(P_n)$ is the projection of H on H_n . Suppose that for $m \ge m_0$ we have that

$$\|(\pi_i(A_m)-\pi_i(A))\pi(P_j)x\| \leq \varepsilon k^{-1} \quad \text{for } j=1,\ldots,k.$$

Then

$$\|\pi(A)x - \pi(A_m)x\| \le \|(\pi(A) - \pi(A_m))(1 - \pi(P))x\| + \|(\pi(A) - \pi(A_m))\pi(P)x\|$$

$$\le 2\|A\|\varepsilon + \sum \{\|(\pi_j(A) - \pi_j(A_m))\pi_j(P_j)x\| \mid 1 \le j \le k\}$$

$$\le (2\|A\| + 1)\varepsilon.$$

This proves that π is a σ -weakly continuous isomorphism of \mathscr{Z} .

By the proof of Theorem 3.1 there is for each n an abelian projection E'_n in the commutator $\pi_n(\mathscr{Z}P_n)'$ on H_n associated with the subspace

closure
$$\{\pi(A)y_n \mid A \in \mathscr{Z}\}$$

such that

$$\tau_{E_n'}(\pi_n(A)) = \pi_n(\phi(AP_n)).$$

Since $\pi(\mathcal{Z})'\pi(P_n)$ is the commutator of $\pi(\mathcal{Z})\pi(P_n)$ on H_n , we have that there is an abelian projection E_n in the von Neumann algebra $\pi(\mathcal{Z})'$ on H majorized by $\pi(P_n)$ such that

$$\tau_{E_n}(\pi(AP_n)) = \pi(\phi(AP_n)).$$

Let E be the abelian projection in $\pi(\mathcal{Z})'$ given by $E = \sum E_n$. Then

$$\tau_E(\pi(A))\pi(P_n) = \tau_{E_n}(\pi(AP_n)) = \pi(\phi(AP_n))$$
$$= \pi(\phi(A))\pi(P_n) \text{ for every } n.$$

This proves that $\tau_E(\pi(A)) = \pi(\phi(A))$ for every A in \mathscr{A} .

Let $\{A_n - L_\phi \mid n \in N\}$ and $\{B_m - L_\phi \mid m \in N'\}$ be two bounded sets in $\mathscr{A} - L_\phi$ and let $\{Q_n \mid n \in N\}$ and $\{R_m \mid m \in N'\}$ be two sets of mutually orthogonal central projections of sum 1 respectively. Then $\sum \pi(Q_n)\pi(A_n)E$ and $\sum \pi(R_m)\pi(B_m)E$ are elements of the AW^* -module $\pi(\mathscr{Z})'E$. We have that

$$\pi\left(\left\langle \sum Q_n(A_n - L_\phi), \sum R_m(B_m - L_\phi) \right\rangle\right) = \pi\left(\sum_{m,n} Q_n R_m \phi(B_m^* A_n)\right)$$
$$= \left\langle \sum \pi(Q_n) \pi(A_n) E, \sum \pi(R_m) \pi(B_m) E \right\rangle$$

in the respective inner products of M_{ϕ} and $\pi(\mathcal{Z})'E$. Therefore,

$$\Phi\left(\sum Q_n(A_n-L_\phi)\right) = \sum \pi(Q_n)\pi(A_n)E$$

defines a function of a uniformly dense submodule

$$M_1 = \left\{ \sum Q_n (A_n - L_\phi) \mid \{Q_n\} \text{ is a set of mutually orthogonal} \right.$$

$$\text{central projections of sum 1;}$$

$$\left\{ A_n - L_\phi \right\} \text{ is a bounded set in } \mathscr{A} - L_\phi \right\}$$

of the module M_{ϕ} into the submodule

$$M_2 = \left\{ \sum \pi(Q_n)\pi(A_n)E \mid \{\pi(Q_n)\} \text{ is a set of mutually orthogonal} \right.$$

$$\text{projections of } \pi(\mathscr{Z});$$

$$\left\{ \pi(A_n)E \right\} \text{ is a bounded subset of } \pi(\mathscr{A})E \right\}$$

of the module $\pi(\mathcal{Z})'E$.

We have that Φ is a linear function of M_1 into M_2 such that $\Phi(AB) = \pi(A)\Phi(B)$ for every A in $\mathscr Z$ and B in M_1 . The range of Φ is M_2 . There is a unique extension of Φ to a map which we again call Φ of the norm completion M_{ϕ} of M_1 onto the closure of M_2 in $\pi(\mathscr Z)'E$ such that

$$\Phi(A_1B_1 + A_2B_2) = \pi(A_1)\Phi(B_1) + \pi(A_2)\Phi(B_2)$$

for every A_1 and A_2 in \mathcal{Z} and B_1 and B_2 in M_{ϕ} and such that

$$\langle \Phi(A), \Phi(B) \rangle = \pi(\langle A, B \rangle)$$

for every A and B in M_{ϕ} . Since the closure of M_2 is precisely the AW^* -module generated by $\pi(\mathscr{A})E$ in $\pi(\mathscr{Z})'E$ [6, Lemma 4.1], we have that the range of Φ is the AW^* -module generated by $\pi(\mathscr{A})E$.

Finally, let $\{A_n - L_{\phi}\}$ be a bounded set in $\mathscr{A} - L_{\phi}$ and let $\{Q_n\}$ be a set of mutually orthogonal central projections of sum 1. Then

$$\begin{split} \Phi\Big(\pi_{\phi}(A)\Big(\sum Q_n(A_n - L_{\phi})\Big)\Big) &= \Phi\Big(\sum Q_n(AA_n - L_{\phi})\Big) \\ &= \sum \pi(Q_n)\pi(AA_n)E = \pi(A) \sum \pi(Q_n)\pi(A_n)E \\ &= \pi(A)\Phi\Big(\sum Q_n(A_n - L_{\phi})\Big) \end{split}$$

for every A in \mathscr{A} . Thus we have that $\Phi(\pi_{\phi}(A)B) = \pi(A)\Phi(B)$ for every A in \mathscr{A} and B in M_{ϕ} . This completes the proof of (4).

Now assume ϕ is a pure state. Let η be the inverse of π restricted to \mathscr{Z} . Let A be a positive element in the unit sphere of the commutator, $\pi(\mathscr{A})'$ of $\pi(\mathscr{A})$ on H. Let $\tau = \tau_E$. The relation

$$\eta(\tau(A\pi(B))) = \psi(B)$$

defines a functional of the module \mathcal{A} . For every B in \mathcal{A} we have that

$$\psi(B^*B) = \eta(\tau(A^{1/2}\pi(B^*B)A^{1/2})) \ge 0$$

and

$$\psi(B^*B) = \eta(\tau(\pi(B^*B)^{1/2}A\pi(B^*B)^{1/2}))$$

$$\leq \eta(\tau(\pi(B^*B)))||A|| \leq \phi(B^*B).$$

So ψ is a positive functional majorized by ϕ . There is a C in \mathscr{Z}^+ such that $C\phi = \psi$ (cf. §2). So for every B_1 and B_2 in \mathscr{A} we have that

$$\tau(\pi(B_2)^*(A - \pi(C))\pi(B_1)) = 0.$$

This means that

$$((A - \pi(C))\pi(B_1)y_n, \pi(B_2)y_m) = 0$$

for every y_n and y_m . However, the closure of the linear span of

$$\{\pi(B) y_n \mid B \text{ in } \mathscr{A}, \text{ all } y_n\}$$

is H. Thus $A = \pi(C)$. Therefore $\pi(\mathscr{A})'$ is equal to $\pi(\mathscr{Z})$. Q.E.D.

Before continuing we present a brief discussion of a certain trace that is particularly useful. Let $\mathscr A$ be a type I algebra with center $\mathscr Z$. There is a locally compact space X and a positive measure ν on X of support X such that $\mathscr Z$ is isometric *-isomorphic to the algebra $L^\infty(X,\nu)$ of all essentially bounded complex-valued measurable functions on X. Identify $\mathscr Z$ with $L^\infty(X,\nu)$. There is a function Tr of $\mathscr A^+$ into the set of all positive finite or infinite valued measurable functions on X with the following properties:

- (1) Tr $(C_1A_1 + C_2A_2) = C_1$ Tr $(A_1) + C_2$ Tr (A_2) for C_1 , C_2 in \mathcal{Z}^+ and A_1 , A_2 in \mathcal{A}^+ ;
 - (2) Tr (U^*AU) = Tr (A) for every A in \mathcal{A}^+ and every unitary U in \mathcal{A} ;
- (3) if $\{A_n\}$ is a monotonely increasing net in \mathscr{A}^+ with least upper bound A, then $\{\operatorname{Tr}(A_n)\}$ has least upper bound $\operatorname{Tr}(A)$;
 - (4) Tr $(E) = \tau_E(E)$ for every abelian projection E in \mathscr{A} .

If $\mathscr{P} = \{A \in \mathscr{A}^+ \mid \operatorname{Tr}(A) \in \mathscr{Z}^+\}$, then \mathscr{P} is the set of all positive elements of a two-sided ideal \mathscr{T} in \mathscr{A} called the trace class of \mathscr{A} . In particular every abelian projection is a member of \mathscr{T} . The function Tr on $\mathscr{P} = \mathscr{T} \cap \mathscr{A}^+$ may be extended to a linear function Tr of \mathscr{T} into \mathscr{Z} which is also a module homomorphism. For every $A \in \mathscr{T}$ the function $B \to \operatorname{Tr}(AB)$ is a function of \mathscr{A}^\sim which is also continuous in the respective σ -weak topologies. We have that $\operatorname{Tr}(BA) = \operatorname{Tr}(AB)$ for every A in \mathscr{T} and B in \mathscr{A} . Also we have that $\|B\|^2 \leq \|\operatorname{Tr}(B^*B)\|$ for every B in \mathscr{T} [9, §4].

Let M be an AW^* -module over the commutative AW^* -algebra \mathcal{Z} and let \mathcal{B} be a subalgebra of the algebra L(M) of all bounded linear operators on M. The algebra \mathcal{B} is said to be irreducible on M if given A in L(M) and C_1, C_2, \ldots, C_n in M then there is a B in \mathcal{B} such that $BC_j = AC_j$ for every $j = 1, 2, \ldots, n$.

THEOREM 4.3. Let \mathscr{A} be a von Neumann algebra with center \mathscr{Z} . Let ϕ be a pure state of the module \mathscr{A} . Then the module M_{ϕ} induced by ϕ is equal to $\mathscr{A}-L_{\phi}$ and $\pi_{\phi}(\mathscr{A})$ is irreducible on M_{ϕ} .

Proof. Let π be the representation relative to ϕ of $\mathscr A$ on the Hilbert space H constructed in Proposition 4.2. Then π enjoys properties (1)–(5) of this proposition. Let E be an abelian projection of the commutator $\mathscr B$ of $\pi(\mathscr Z)$ on H such that $\tau_E(\pi(A)) = \pi(\phi(A))$. We show that $\pi(\mathscr A)E = \mathscr BE$. This means that the module M_{ϕ} is $\mathscr A - L_{\phi}$. The algebra of all bounded linear operators on $\mathscr BE$ is identified with $\mathscr B$ acting on $\mathscr BE$ by left multiplication [17, Theorem 8]. Given B_1, B_2, \ldots, B_m and B in $\mathscr B$ we show that there is an A in $\mathscr A$ with $\pi(A)B_jE = BB_jE$ for $j = 1, 2, \ldots, m$. We

may also show that A can be chosen to be self-adjoint if B is self-adjoint. The proof essentially consists of showing that E is a regular projection with respect to $\pi(\mathscr{A})$ [27] using a construction known for pure states (cf. [2, §2.8]).

As a preliminary step assume that B_1E, B_2E, \ldots, B_mE are partial isometric operators V_1, V_2, \ldots, V_m respectively. Assume also that the range projections F_1, F_2, \ldots, F_m of the V_1, V_2, \ldots, V_m are mutually orthogonal. We show that there is an element B' in \mathcal{B} such that $B'V_i = BV_i$ $(1 \le i \le m)$ and such that $\|B'\|^2 \le 2 \sum \|V_i^*B^*BV_i\|$. We show that B' may be chosen to be self-adjoint if B is self-adjoint. Let G_i be the range projection of BV_i $(1 \le i \le m)$. Since G_i is equivalent to the domain projection of BV_i , which is majorized by E, the projection G_i is abelian (cf. [1, III, §1]). Let G be the least upper bound of the set

$$\{F_i \mid 1 \leq i \leq m\} \cup \{G_i \mid 1 \leq i \leq m\}.$$

The projection $G - \sum F_i$ may be written as the sum of mutually orthogonal abelian projections $F_{m+1}, F_{m+2}, \ldots, F_p$ (cf. [9, Theorem 2.1]). Let

$$B' = \sum \{F_j B F_i \mid 1 \le i \le m; 1 \le j \le p\}$$

if B is not self-adjoint and let

$$B' = \sum \{F_j B F_i \mid 1 \le i \le p; 1 \le j \le m\} + \sum \{F_j B F_i \mid 1 \le i \le m; m+1 \le j \le p\}$$

if B is self-adjoint. In this case B' is self-adjoint. In either case

$$B'V_i = \sum \{F_jBV_i \mid 1 \leq j \leq p\} = BV_i$$

for i=1, 2, ..., m. In the first case

$$\operatorname{Tr}(B'^*B') = \sum \{\operatorname{Tr}(F_i B'^*B'F_i) \mid 1 \le i \le m\} \\ = \sum \{\tau_{F_i}(B'^*B') \mid 1 \le i \le m\}.$$

In the second case we have that

$$\operatorname{Tr}(B'^*B') = \operatorname{Tr}(B'^2) = \sum \{\operatorname{Tr}(F_iB'^2F_i) \mid 1 \leq i \leq m\}$$

$$+ \sum \{\operatorname{Tr}(F_jB'F_iB'F_j) \mid m+1 \leq i \leq p; 1 \leq j \leq p\}$$

$$= \sum \{\operatorname{Tr}(F_iB'^2F_i) \mid 1 \leq i \leq m\}$$

$$+ \sum \{\operatorname{Tr}(F_jB'F_iB'F_j) \mid m+1 \leq i \leq p; 1 \leq j \leq m\}$$

$$\leq 2 \sum \{\tau_{F_i}(B'^2) \mid 1 \leq i \leq m\}$$

since $F_jB'(\sum \{F_i \mid m+1 \leq i \leq p\})B'F_j \leq F_jB'^2F_j$.

We have that

$$\|\tau_{F_i}(B'^*B')\| = \|F_iB'^*B'F_i\| = \|V_i^*B'^*B'V_i\|.$$

Thus in either case we conclude that

$$||B'^*B'|| \le ||\operatorname{Tr}(B'^*B')|| \le 2 \sum ||V_i^*B^*BV_i||.$$

This verifies the existence of B' in \mathcal{B} . So we may assume that

$$||B|| \le (2m)^{1/2}\alpha$$
 where $\alpha = \max\{||BV_i|| \mid 1 \le i \le m\}$.

By an application of Tomita's results [27, Theorem 6] we may find a nonzero projection F in $\mathscr B$ majorized by E and an element A in $\pi(\mathscr A)$ such that $||A|| \le 2(2m)^{1/2}\alpha$ and $AV_jF=BV_jF$ for $j=1,2,\ldots,m$. Indeed given a unit vector x in the Hilbert space of $\mathscr B$ such that Ex=x, then we may construct by induction a decreasing sequence $\{F'_n\}$ of abelian projections and a sequence of elements $\{A_n\}$ in $\pi(\mathscr A)$ such that

- (1) $||F'_n x F'_{n+1} x|| \le 4^{-n+1}$ and $||x F'_1 x|| \le 4^{-1}$;
- (2) $||A_n|| \le 2^{-n+1} (2m)^{1/2} \alpha$; and
- (3) $\text{lub }\{\|(\sum \{A_j: 1 \le j \le n\} B)V_iF_n'\|: 1 \le i \le m\} \le 2^{-n}\alpha \text{ for every } n=1, 2, \ldots$ Then $A = \sum A_n$ and $F = \text{glb } F_n' \ne 0$. If B is self-adjoint then A may be chosen self-adjoint. Let $\{P_n \mid n \in D\}$ be a maximal set of mutually orthogonal nonzero projections in $\pi(\mathscr{Z})$ with the property: for each P_n there is an element A_n in $\pi(\mathscr{A})P_n$ such that $\|A_n\| \le 2(2m)^{1/2}\alpha$ and such that $A_nV_jE = BV_jEP_n$. We see that $\sum P_n = 1$; otherwise, the projection $P = 1 \sum P_n$ is nonzero. There is a nonzero projection F majorized by EP and an element A in $\pi(\mathscr{A})$ such that $\|A\| \le 2(2m)^{1/2}\alpha$ and $AV_jF = BV_jF$. But there is a nonzero projection Q in $\pi(\mathscr{Z})$ majorized by P such that QE = F. This contradicts the maximality of the set $\{P_n\}$. Therefore, the least upper bound of the set $\{P_n\}$ is 1. There is a set $\{Q_n \mid n \in D\}$ of mutually orthogonal projections in \mathscr{Z} such that $\pi(Q_n) = P_n$ for each $n \in D$. Since π is norm decreasing, there is for each A_n an element B_n in $\mathscr{A}P_n$ of norm not exceeding $3(2m^{1/2})\alpha$ such that $\pi(B_n) = A_n$. There is an A in \mathscr{A} such that $AQ_n = B_n$ for each n in D. For each $n \in D$, we have $\pi(A)V_jE = BV_jE$ because $\pi(A)V_jEP_n = BV_jEP_n$ for every n in D. Let us now assume that B_1E , B_2E , ..., B_nE are arbitrary. Let F_1 , F_2 , ..., F_m

Let us now assume that B_1E, B_2E, \ldots, B_mE are arbitrary. Let F_1, F_2, \ldots, F_m be the range projections of B_1E, B_2E, \ldots, B_mE respectively. Let F be the least upper bound of F_1, F_2, \ldots, F_m . There are mutually orthogonal abelian projections G_1, G_2, \ldots, G_p of sum F. Let V_1, V_2, \ldots, V_p be partial isometries with range support G_1, G_2, \ldots, G_p respectively and domain support majorized by E (cf. [1, Chapter III, §3, Lemma 1]). By the first part of the proof there is an element A in \mathcal{A} , which may be chosen to be self-adjoint if B is self-adjoint, such that $\pi(A)V_j = BV_j$ ($1 \le j \le p$). We have that $GB_jE = B_jE$ ($1 \le j \le m$). So

$$B_{j}E = \sum \{G_{k}B_{j}E \mid 1 \le k \le p\} = \sum \{V_{k}V_{k}^{*}B_{j}E \mid 1 \le k \le p\}$$
$$= \sum \{\tau_{E}(V_{k}^{*}B_{j})V_{k} \mid 1 \le k \le p\}.$$

Thus, we obtain

$$BB_jE = \sum \tau_E(V_k^*B_j)BV_k = \sum \tau_E(V_k^*B_j)\pi(A)V_k = \pi(A)B_jE$$
 for $j=1,2,\ldots,m$. Q.E.D.

In the corollary we use the following ideas. Let \mathscr{A} be a von Neumann algebra with center \mathscr{Z} ; let ζ be a maximal ideal of \mathscr{Z} . The smallest closed two-sided ideal of

 \mathcal{A} containing ζ is denoted by $[\zeta]$. Then $[\zeta]$ is the closure of the set

$$\left\{\sum \left\{A_{i}B_{i} \mid 1 \leq i \leq n\right\} \mid A_{i} \in \zeta, B_{i} \in \mathcal{A} \left(1 \leq i \leq n\right); n = 1, 2, \ldots\right\}\right\}$$

Let $\mathscr{A}(\zeta)$ be the factor C^* -algebra $\mathscr{A}/[\zeta]$ and let $A(\zeta)$ denote the image of A in $\mathscr{A}(\zeta)$. Then J. Glimm proved that for each fixed A in \mathscr{A} the function $\zeta \to ||A(\zeta)||$ is continuous on the spectrum of \mathscr{Z} [3, Lemma 10]. If P is a projection of \mathscr{Z} , then

$$||AP|| = \text{lub } \{||A(\zeta)|| \mid \zeta \text{ in the spectrum of } \mathcal{Z} \text{ and } P^{\wedge}(\zeta) = 1\}.$$

The least upper bound is attained. If $A(\zeta)$ is a positive element in $\mathscr{A}(\zeta)$ for each ζ , then A is positive in \mathscr{A} .

Now assume \mathscr{A} is a type I algebra. Let the notation be the same as the preceding paragraph. Let ζ be a fixed maximal ideal of \mathscr{Z} . Suppose E is an abelian projection in \mathscr{A} such that $E(\zeta) \neq 0$. The space $H(\zeta) = \mathscr{A}E(\zeta)$ is a Hilbert space with the inner product $\langle AE(\zeta), BE(\zeta) \rangle = \tau_E(B^*A)^{\wedge}(\zeta)$. The algebra \mathscr{A} has a representation Ψ with kernel $[\zeta]$ on the algebra of all bounded operators on $H(\zeta)$ given by $\Psi(A)BE(\zeta) = AEB(\zeta)$, for every A and B in \mathscr{A} . The closed two-sided ideal I_a of \mathscr{A} generated by the abelian projections of \mathscr{A} maps onto the ideal of completely continuous operators of $H(\zeta)$. In particular if x is an arbitrary vector in $H(\zeta)$ there is an abelian projection F in \mathscr{A} such that $\Psi(F)x = x$. The images of abelian projections under Ψ have dimension not exceeding 1 [3, §4].

COROLLARY. Let \mathscr{A} be a von Neumann algebra with center \mathscr{Z} and let ϕ be a \mathscr{Z} -irreducible functional of the module \mathscr{A} . For every ζ in the spectrum of \mathscr{Z} the functional $\phi(A)^{\wedge}(\zeta)$ of \mathscr{A} is irreducible. In particular if ϕ is an extreme point of the set of positive functionals of norm not exceeding 1 of the module \mathscr{A} , then $\phi(A)^{\wedge}(\zeta)$ is irreducible on \mathscr{A} .

Proof. We may assume that $\phi(1)^{\smallfrown}(\zeta) \neq 0$. There is a projection P in $\mathscr Z$ which does not lie in the maximal ideal ζ of $\mathscr Z$ and a number $\alpha > 0$ such that $\phi(1)P \geq \alpha P$. Let C be a positive element in $\mathscr ZP$ such that $C\phi(1)=P$. The functional $\psi=C\phi$ is a $\mathscr Z$ -irreducible functional of the module $\mathscr A$. Indeed, if ψ majorizes the positive functional θ of the module $\mathscr A$, then $P\phi$ majorizes $P\phi(1)\theta$ and so ϕ majorizes $P\phi(1)\theta$. There is a D in $\mathscr Z^+$ such that $D\phi=P\phi(1)\theta$. Thus $D\psi=CD\phi=CP\phi(1)\theta=\theta$. This proves that ψ is $\mathscr Z$ -irreducible. Since the functional $\psi(A)^{\smallfrown}(\zeta)$ is equal to a nonzero scalar multiple $C^{\smallfrown}(\zeta)$ of $\phi(A)^{\smallfrown}(\zeta)$, it is sufficient to prove that $\psi(A)^{\smallfrown}(\zeta)$ is irreducible.

Now let ψ_1 be any pure state of the module \mathscr{A} . The functional $P\psi+(1-P)\psi_1=\psi'$ is a \mathscr{Z} -irreducible state of the module \mathscr{A} . Indeed, if θ is a positive functional of the module \mathscr{A} majorized by ψ' , then $P\psi=\psi$ majorizes $P\theta$ and $(1-P)\psi_1$ majorizes $(1-P)\theta$. There are elements C_1 and C_2 in \mathscr{Z}^+ with $C_1\psi=P\theta$ and $C_2\psi_1=(1-P)\theta$. We may assume that $PC_1=C_1$ and $(1-P)C_2=C_2$. Setting $C=C_1+C_2$ we have that $C\psi'=\theta$. So ψ' is a \mathscr{Z} -irreducible state of the module \mathscr{A} , i.e. ψ' is a pure state of \mathscr{A} . Since $\psi'(A)^{\wedge}(\zeta)=\psi(A)^{\wedge}(\zeta)$ for every A in \mathscr{A} there is no loss of generality in assuming that ψ is a pure state of the module \mathscr{A} .

Let π be a representation of $\mathscr A$ on a Hilbert space H constructed in Proposition 4.2 relative to ϕ . Let E be a maximal abelian projection of the von Neumann algebra $\mathscr B$ generated by $\pi(\mathscr A)$ on H such that $\tau_E(\pi(A)) = \pi(\phi(A))$ for every A in $\mathscr A$. There is a homeomorphism η of the spectrum Z of the center $\mathscr Z$ of $\mathscr A$ onto the spectrum of Z_1 of $\pi(\mathscr Z)$ such that $\pi(A)^{\wedge}(\eta(\zeta)) = A^{\wedge}(\zeta)$ for every $\zeta \in Z$. Let ζ be a fixed element in Z and let $\eta(\zeta) = \zeta'$. Then

$$\phi(A)^{\wedge}(\zeta) = \tau_E(\pi(A))^{\wedge}(\zeta').$$

There is a homomorphism Ψ of \mathscr{B} with kernel $[\zeta']$ into the algebra of all bounded linear operators on the Hilbert space $H(\zeta') = \mathscr{B}E(\zeta')$. The ideal generated by the set of all abelian projections of \mathscr{B} maps onto the set of all completely continuous operators of $H(\zeta')$ under Ψ . Let x_1, x_2, \ldots, x_m be elements of $\mathscr{B}E(\zeta')$. There are elements B_1, B_2, \ldots, B_m in \mathscr{B} with $x_j = B_j E(\zeta')$ for $j = 1, 2, \ldots, m$. Let B be an element in \mathscr{B} . There is an element A in $\pi(\mathscr{A})$ such that $AB_jE = BB_jE$ for $j = 1, 2, \ldots, m$ (Theorem 4.3). This means $\Psi(A)x_j = \Psi(B)x_j$ for $j = 1, 2, \ldots, m$. This proves that $\Psi(\pi(\mathscr{A}))$ is irreducible on $H(\zeta')$. Let x be the vector $E(\zeta')$ in $H(\zeta')$. We have that

$$\phi(A)^{\hat{}}(\zeta) = \tau_E(\pi(A))^{\hat{}}(\zeta') = (\Psi(\pi(A))x, x)$$

for every A in \mathscr{A} . This proves that $\phi(A)^{\hat{}}(\zeta)$ is irreducible on \mathscr{A} . Q.E.D.

We now record some facts about the kernel of π_{ϕ} .

PROPOSITION 4.4. Let \mathscr{A} be a von Neumann algebra and let ϕ be a state of the module \mathscr{A} . The kernel of π_{ϕ} is contained in the strong radical (viz, the intersection of all two-sided maximal ideals) of \mathscr{A} . In particular, if \mathscr{A} is finite or if \mathscr{A} is σ -finite and of type III, then π_{ϕ} is faithful.

Proof. Let A be an element of \mathscr{A} . Let \mathscr{X}'_A be the uniform closure of the set

$$\left\{ \sum \left\{ \alpha_i U_i^* A U_i \mid i = 1, 2, \dots, n \right\} \mid \alpha_1, \alpha_2, \dots, \alpha_n \text{ are positive of sum 1}; \right.$$

$$\left. U_1, U_2, \dots, U_n \text{ are unitary in } \mathscr{A}; n = 1, 2, \dots \right\}.$$

Then $\mathscr{K}'_A \cap \mathscr{Z} = \mathscr{K}_A$ is nonvoid for every A in \mathscr{A} . If \mathscr{A} is finite, then \mathscr{K}_A contains a single element $A^{\#}$. In this case if $A \in \mathscr{A}^{+}$ and $A^{\#} = 0$, then A = 0 [1, III, §5].

Assume first that $\mathscr A$ is finite. Set $\pi_\phi = \pi$ and let A be an element of $\mathscr A$ such that $\pi(A) = 0$; then $\pi(A^*A) = 0$. Since

$$\pi\left(\sum \alpha_{i}U_{i}^{*}A^{*}AU_{i}\right) = \sum \alpha_{i}\pi(U_{i}^{*})\pi(A^{*}A)\pi(U_{i}) = 0$$

and since π is uniformly continuous, we have that $\pi((A^*A)^{\#})=0$. This means

$$0 = \phi((A^*A)^\#) = (A^*A)^\#.$$

Therefore, A*A=0 and thus π is faithful.

Now assume that \mathscr{A} is properly infinite. The radical of \mathscr{A} is the ideal of \mathscr{A} all of

whose positive elements A satisfy the relation $\mathcal{K}_A = \{0\}$, [10, Proposition 2.4]. Therefore we readily conclude that $\pi(A) = 0$ implies that A is in the radical of \mathcal{A} .

Now in the general case there is a projection P in the center of \mathscr{A} such that $\mathscr{A}P$ is finite and $\mathscr{A}(1-P)$ is properly infinite. If A is an element in the kernel of π , then AP=0 and A(1-P) is in the radical of $\mathscr{A}(1-P)$. But the radical of $\mathscr{A}(1-P)$ is the radical of \mathscr{A} . So the kernel of π is contained in the radical of \mathscr{A} . Q.E.D.

We now show that there are states which have faithful representations.

PROPOSITION 4.5. Let \mathscr{A} be a von Neumann algebra. There is a projection E in \mathscr{A} of central support 1 such that every state ϕ of the module \mathscr{A} with the property $\phi(E) = 1$ has a faithful representation π_{ϕ} .

Proof. First let \mathscr{A} be semifinite. Let E be any finite projection of \mathscr{A} of central support 1. Then let ϕ be a state of \mathscr{A} such that $\phi(E)=1$. Let F be a projection of \mathscr{A} with $\pi(F)=0$ where $\pi=\pi_{\phi}$. Suppose F has central support P. First assume that $F \leq EP$. Since EP is finite, there is a set $\{P_i\}$ of mutually orthogonal central projections of sum P such that for each P_i there is a set

$${F_{ij} \mid 1 \leq j \leq n_i < +\infty}$$

of mutually orthogonal projections with the properties:

$$F_{ij} \sim FP_i$$
 and $F_i' = EP_i - \sum_i F_{ij} \prec FP_i$ [1, III, §1].

Since $\pi(FP_i)=0$ we have that $\pi(F_{ij})=0$ $(1 \le j \le n_i)$ and $\pi(F'_i)=0$. Indeed, if V is a partial isometric operator and $\pi(V^*V)=0$, then $0=\pi(V^*V)=\pi(V)^*\pi(V)$ implies $\pi(V)=0$. So $\pi(VV^*)=0$. Then we conclude that $\pi(EP_i)=0$ for every P_i . This means $P_i=0$ and thus P=0. So F=0.

In the general case there is a central projection P such that $FP \prec EP$ and $E(1-P) \prec F(1-P)$. We have that FP=0 from the first part of the proof since we may assume $FP \leq EP$. Also $\pi(E(1-P))=0$. So 1-P=0. Thus, F=0.

Now let A be any element of $\mathscr A$ such that $\pi(A)=0$. Suppose $\varepsilon>0$ is given; let F_1, F_2, \ldots, F_m be orthogonal projections and let $\alpha_1, \alpha_2, \ldots, \alpha_m$ be positive numbers with $0 \le \sum \alpha_i F_i \le A^* A$ and $\|A^* A - \sum \alpha_i F_i\| \le \varepsilon$. Then $\pi(F_i) = 0$ $(i = 1, 2, \ldots, m)$ and so $F_i = 0$ $(i = 1, 2, \ldots, m)$. We obtain this from the first part. This shows $\|A^* A\| \le \varepsilon$. Since $\varepsilon>0$ is arbitrary, we have that A=0. This shows that π is faithful if $\mathscr A$ is semifinite.

Now let \mathscr{A} be a purely infinite von Neumann algebra with no nonzero σ -finite central projections. There is a net $\{P_i\}$ of orthogonal central projections of sum 1 such that each P_i is least upper bound of a set S_i of equivalent mutually orthogonal σ -finite projections [1, III, §1, Lemma 7]. For each i let $E_i \in S_i$ and let $E = \sum E_i$. Then E is a projection of central support 1. If F is a projection of central support Q then $EQP_i \prec FP_i$ for each P_i [1, III, §8, Corollary 5]. So $EQ \prec F$.

Let ϕ be a state of the module \mathscr{A} such that $\phi(E) = 1$. We show that the kernel of $\pi_{\phi} = \pi$ is 0. It is sufficient to show that $\pi(F) = 0$ implies F = 0 whenever F is a pro-

jection. However, if F has central support Q then $EQ \prec F$. So $\pi(EQ) = 0$ and thus $\phi(EQ) = Q = 0$. This proves F = 0.

Now let $\mathscr A$ be a purely infinite algebra. There is a projection P of $\mathscr A$ such that P is the least upper bound of σ -finite central projections and such that 1-P majorizes no nonzero σ -finite central projections. Now let F be any projection in $\mathscr AP$ of central support 1 and let E be a projection previously constructed for a purely infinite von Neumann algebra with no nonzero σ -finite central projections. Let ϕ be a state of $\mathscr A$ such that $\phi(E+F)=1$. The canonical representation π induced by ϕ has kernel equal to (0) [Proposition 4.4].

The general result for an arbitrary von Neumann \mathcal{A} algebra now follows from the fact that there is a central projection P such that $\mathcal{A}P$ is semifinite and $\mathcal{A}(1-P)$ is purely infinite. Q.E.D.

THEOREM 4.6. Let $\mathscr A$ be a von Neumann algebra. There is a pure state of the module $\mathscr A$ whose canonical representation is faithful.

Proof. There is a projection E of \mathscr{A} of central support 1 such that the canonical representation π_{ϕ} induced by a state ϕ of the module \mathscr{A} is faithful whenever $\phi(E) = 1$ (Proposition 4.5). By Proposition 4.1 there is a pure state ϕ of the module \mathscr{A} such that $\phi(E) = 1$. Q.E.D.

THEOREM 4.7. Let $\mathscr A$ be a von Neumann algebra and let ζ be a maximal ideal of the center of $\mathscr A$. The smallest closed two-sided ideal $[\zeta]$ in $\mathscr A$ containing ζ is a primitive ideal.

Proof. Let ϕ be a pure state of $\mathscr A$ whose canonical representation π_{ϕ} is faithful. The representation π of $\mathscr A$ on the space H satisfying properties (1)–(5) of Proposition 4.2 constructed relative to ϕ is faithful. Let $\zeta' = \pi(\zeta)$ and let $[\zeta']$ be the smallest closed two-sided ideal in the von Neumann algebra $\mathscr B$ generated by $\pi(\mathscr A)$ on H which contains ζ' . There is an irreducible representation Ψ of $\pi(\mathscr A)$ with kernel $\pi(\mathscr A) \cap [\zeta']$ (corollary, Theorem 4.3). However $\pi(\mathscr A) \cap [\zeta']$ is the smallest closed two-sided ideal J of $\pi(\mathscr A)$ which contains ζ' . Indeed, if E is a projection in $\pi(\mathscr A) \cap [\zeta']$ then the Gelfand transform P^{\wedge} of the central support P of E vanishes at the point ζ' . Thus the projection P is in the maximal ideal ζ' and so E is in the ideal S. Because S contains all projections of $\pi(\mathscr A) \cap [\zeta']$, the ideal $\pi(\mathscr A) \cap [\zeta']$ is contained in S. Therefore we have that $S = \pi(\mathscr A) \cap [\zeta']$. However, $S = \pi(S) = \pi(S)$ is faithful. So the kernel of $S = \pi(S) = \pi(S)$. Q.E.D.

The set $Prim(\mathscr{A})$ of all primitive ideals of \mathscr{A} supplied with the hull-kernel topology is called structure space of \mathscr{A} .

PROPOSITION 4.7. Let \mathscr{A} be a von Neumann algebra with center \mathscr{Z} . Let Z be the spectrum of \mathscr{Z} . The set $\{ [\zeta] \mid \zeta \in Z \}$ is dense in the structure space of \mathscr{A} .

Proof. Let X be a nonvoid open set in Prim (\mathscr{A}). There is an ideal I in \mathscr{A} such that

$$X = \{J \in \operatorname{Prim}(\mathscr{A}) \mid J \Rightarrow I\}.$$

Let J be an ideal in X and let $J \cap \mathscr{Z} = \zeta$. The ideal ζ is maximal in \mathscr{Z} . We have that $[\zeta] \Rightarrow I$ since $[\zeta] \subset J$. This proves that $[\zeta] \in X$. Thus $\{[\zeta] \mid \zeta \in Z\}$ is dense in Prim (\mathscr{A}) . Q.E.D.

The set \mathscr{A}^{\wedge} of unitary equivalence classes of irreducible representations of \mathscr{A} with the topology induced by the map $\pi \to \text{kernel } \pi$ of \mathscr{A}^{\wedge} into Prim (\mathscr{A}) is known to be a Baire space [2, 3.4.13]. A proof of this fact is obtainable from the preceding proposition.

The next theorem characterizes a pure state in terms of its kernel. It is the analogue of a theorem of Kadison [13].

THEOREM 4.8. Let $\mathscr A$ be a von Neumann algebra. A state ϕ of the module $\mathscr A$ is a pure state if and only if the kernel of ϕ is the sum of the sets

$$L_{\phi} = \{A \in \mathcal{A} \mid \phi(A^*A) = 0\}$$
 and $L_{\phi}^* = \{A \in \mathcal{A} \mid A^* \in L_{\phi}\}.$

Proof. Suppose ϕ is a pure state of the module \mathscr{A} . Let π be a representation of \mathscr{A} on a Hilbert space H which satisfies properties (1)–(5) of Proposition 4.2 with respect to ϕ . Let E be the abelian projection of the von Neumann algebra \mathscr{B} generated by $\pi(\mathscr{A})$ such that $\pi(\phi(A)) = \tau_E(\pi(A))$ for every A in \mathscr{A} . Suppose A is a point of the kernel of ϕ . The range projection F of $\pi(A)E$ in \mathscr{B} is an abelian projection orthogonal to E. There is a hermitian element C in \mathscr{A} such that $\pi(C)\pi(A)E = \pi(A)E$ and $\pi(C)E=0$ (Theorem 4.3). Thus, $A-CA \in L_{\phi}$ and $A^*C \in L_{\phi}$. So A=(A-CA)+CA is an element of $L_{\phi}+L_{\phi}^*$. This proves that $L_{\phi}+L_{\phi}^*$ contains the kernel of ϕ . Because $|\phi(A)|^2 \le \phi(A^*A)$ for every A in \mathscr{A} , the kernel of ϕ contains $L_{\phi}+L_{\phi}^*$. So the kernel of ϕ is equal to $L_{\phi}+L_{\phi}^*$.

Conversely, let $L_{\phi}+L_{\phi}^*$ be the kernel of ϕ . Let C be a central element of \mathscr{A} strictly between 0 and 1 and let ϕ_1 and ϕ_2 be two positive functionals of the module \mathscr{A} of norm not exceeding 1 such that $C\phi_1+(1-C)\phi_2=\phi$. First notice that ϕ_1 and ϕ_2 are states of \mathscr{A} . Then if $\phi(A)=0$, there are elements B_1 and B_2 in L_{ϕ} and L_{ϕ}^* respectively such that $A=B_1+B_2$. Because $\phi(B_1^*B_1)=\phi(B_2B_2^*)=0$, we have that $\phi_1(B_j)=\phi_2(B_j)=0$ for j=1,2. Thus $\phi_1(A)=\phi_2(A)=0$. Now for arbitrary A in \mathscr{A} there is a central element B in \mathscr{A} such that $\phi(A-B)=0$. Thus $\phi_1(A-B)=\phi_2(A-B)=0$ and so $\phi_1(A)=\phi_2(A)=B=\phi(A)$. This proves ϕ is a pure state. Q.E.D.

5. Pointwise convergence of states. Let \mathscr{A} be a von Neumann algebra. A net of states $\{\phi_n\}$ of the module \mathscr{A} is said to converge pointwise to a state ϕ if $\{\phi_n(A)\}$ converges uniformly to $\phi(A)$ for every A in \mathscr{A} . The set $E(\mathscr{A})$ of states of the module \mathscr{A} taken with the topology of pointwise convergence is called the state space of \mathscr{A} . The closure in the state space of the module \mathscr{A} of the set of pure states in \mathscr{A} is called the pure state space of the module \mathscr{A} . It is denoted by $P(\mathscr{A})$. An element ϕ in $E(\mathscr{A})$ is said to be a vector state if there is an abelian projection E in the commutator of the center of \mathscr{A} such that $\phi(A) = \tau_E(A)$ for every A in \mathscr{A} . The closure in the space $E(\mathscr{A})$ of the set of vector states is called the vector state space of \mathscr{A} . It is denoted by $V(\mathscr{A})$.

We now study the structure of $P(\mathscr{A})$ and $V(\mathscr{A})$ using the theorems of Glimm [3, §4] as our guide.

THEOREM 5.1. If $\mathscr A$ is a continuous von Neumann algebra, the state space, the pure state space, and the vector state space of the module $\mathscr A$ coincide.

Proof. First we show that the vector state space $V(\mathscr{A})$ of the module \mathscr{A} coincides with the state space $E(\mathscr{A})$ of the module \mathscr{A} . Let ϕ be an element of $E(\mathscr{A})$ and let A_1, A_2, \ldots, A_n be elements of \mathscr{A} . Assume $A_1 = 1$. Let \mathscr{Z}' be the commutator of the center \mathscr{Z} of \mathscr{A} and let $[\zeta]$ denote the smallest closed two-sided ideal in \mathscr{Z}' which contains the maximal ideal ζ of \mathscr{Z} . There is for each ideal ζ an irreducible representation Ψ_{ζ} of \mathscr{Z}' with kernel $[\zeta]$ on the algebra of bounded linear operators of a Hilbert space $H(\zeta)$ such that $\Psi_{\zeta}(\mathscr{Z}')$ contains the ideal $C(H(\zeta))$ of completely continuous operators on $H(\zeta)$. Since \mathscr{A} is a continuous algebra, the image $\Psi_{\zeta}(\mathscr{A})$ of \mathscr{A} contains no minimal projections. So $\Psi_{\zeta}(\mathscr{A}) \cap C(H(\zeta)) = (0)$. There is unit vector x_{ζ} in $H(\zeta)$ such that

$$|\phi(A_j)^{\hat{}}(\zeta) - (\Psi_{\zeta}(A_j)x_{\zeta}, x_{\zeta})| < \frac{1}{2} \quad \text{for } j = 1, 2, \ldots, n.$$

Indeed, the kernel of the functional $A \to \phi(A)^{\hat{}}(\zeta)$ of $\mathscr A$ contains the ideal $\mathscr A \cap [\zeta]$. So there is a functional ϕ_{ζ} of $\Psi_{\zeta}(\mathscr A)$ such that

$$\phi_{\zeta} \cdot \Psi_{\zeta}(A) = \phi(A)^{\hat{\zeta}}$$

Then the statement in question simply states that the functional ϕ_{ζ} is the pointwise limit of vector states of $\Psi_{\zeta}(\mathscr{A})$ [2, 11.2.1]. There is an abelian projection E_{ζ} of \mathscr{Z}' such that

$$(\Psi_{\zeta}(B)x_{\zeta}, x_{\zeta}) = \tau_{E_{\zeta}}(B)^{\hat{}}(\zeta)$$

for every B in \mathscr{Z}' (cf. [7, Theorem 1]). This means that there is a central projection P with $P^{\wedge}(\zeta) = 1$ such that $E_{\varepsilon}P$ has central support P and such that

$$\|\phi(A_j)P - \tau_{E_iP}(A_j)\| < 1$$

for j=1, 2, ..., n. Thus there is an abelian projection E of central support 1 such that $\|\phi(A_j) - \tau_E(A_j)\| < 1$ for j=1, 2, ..., n. This shows that ϕ is the pointwise limit of vector states. Thus $E(\mathscr{A}) = V(\mathscr{A})$.

We now show that $E(\mathscr{A})$ is equal to the pure state space of the module \mathscr{A} . First let ψ be any pure state of the module \mathscr{A} whose canonical representation π_{ψ} is faithful (Theorem 4.6). Let π be a faithful representation of \mathscr{A} on a Hilbert space H such that the commutator $\pi(\mathscr{A})'$ of $\pi(\mathscr{A})$ on H is equal to $\pi(\mathscr{Z})$ and such that there is an abelian projection E in $\pi(\mathscr{Z})'$ of central support 1 with the property $\tau_E(\pi(A)) = \pi(\psi(A))$ for every A in \mathscr{A} (Proposition 4.2). Let ϕ be an element of $E(\mathscr{A})$ and let A_1, A_2, \ldots, A_m be elements of \mathscr{A} . There is an abelian projection F of central support 1 in $\pi(\mathscr{Z})'$ such that

$$\|\pi \cdot \phi \cdot \pi^{-1}(\pi(A_i)) - \tau_F(\pi(A_i))\| < 1$$

for $j=1, 2, \ldots, m$. Indeed, if ζ is a maximal ideal in $\pi(\mathscr{Z})$, there is an irreducible representation Ψ_{ζ} of $\pi(\mathscr{Z})'$ with kernel $[\zeta]$ on a Hilbert space such that the image of $\pi(\mathscr{A})$ contains no completely continuous operators. The same reasoning as the previous paragraph therefore is applicable. So it is sufficient to show that $\pi^{-1} \cdot \tau_F \cdot \pi$ is a pure state of \mathscr{A} . We do this by showing that it is \mathscr{Z} -irreducible. Let θ be a positive functional of the module \mathscr{A} majorized by $\pi^{-1} \cdot \tau_F \cdot \pi$. Then $\theta' = \pi \cdot \theta \cdot \pi^{-1}$ on $\pi(\mathscr{A})$ is majorized by τ_F on $\pi(\mathscr{A})$. Let ζ be a maximal ideal in $\pi(\mathscr{Z})$. There are positive functionals f and g on $\Psi_{\zeta}(\pi(\mathscr{A}))$ such that

$$f(\Psi_t(A)) = \theta'(A)^{\hat{}}(\zeta)$$
 and $g(\Psi_t(A)) = \tau_F(A)^{\hat{}}(\zeta)$

for A in $\pi(\mathscr{A})$. Then g majorizes f on $\Psi_{\zeta}(\pi(\mathscr{A}))$. However g is irreducible on $\Psi_{\zeta}(\pi(\mathscr{A}))$ and so there is an α_{ζ} in the complex field such that $f(A) = \alpha_{\zeta}g(A)$ for all A in $\Psi_{\zeta}(\pi(\mathscr{A}))$. But $\alpha_{\zeta} = \theta'(1)^{\hat{\zeta}}$. Since ζ is arbitrary we have that $\theta' = \theta'(1)\tau_{F}$ on $\pi(\mathscr{A})$. This proves that $\pi^{-1} \cdot \tau_{F} \cdot \pi$ is \mathscr{Z} -irreducible. Q.E.D.

We see that if π is a faithful representation of the continuous algebra \mathscr{A} on a Hilbert space H with the property that the commutator of $\pi(\mathscr{A})$ is $\pi(\mathscr{Z})$ and that there is an abelian projection E with central support 1 in the commutator $\pi(\mathscr{Z})'$ of $\pi(\mathscr{Z})$ such that $\pi^{-1} \cdot \tau_E \cdot \pi$ is a pure state of \mathscr{A} , then the set

$$\{\pi^{-1} \cdot \tau_F \cdot \pi \mid F \text{ is an abelian projection of central support } 1 \text{ in } \pi(\mathcal{Z})'\}$$

is pointwise dense in $E(\mathscr{A})$.

We now identify the pure state and vector state spaces of a type I algebra. We begin with the following theorem.

THEOREM 5.2. If \mathscr{A} is a type I von Neumann algebra, the vector state space $V(\mathscr{A})$ of the module \mathscr{A} is equal to the pure state space $P(\mathscr{A})$ of the module \mathscr{A} .

Proof. Since every vector state of the module \mathscr{A} is a pure state of the module \mathscr{A} , we have that $V(\mathscr{A}) \subseteq P(\mathscr{A})$ [12, Remark, Theorem 9].

Now let ϕ be a pure state of the module \mathscr{A} . Let A_1, A_2, \ldots, A_m be elements of \mathscr{A} . For each maximal ideal ζ of the center of \mathscr{A} there is an irreducible representation Ψ_{ζ} of \mathscr{A} with kernel $[\zeta]$ on a Hilbert space $H(\zeta)$ such that $\Psi_{\zeta}(\mathscr{A})$ contains the completely continuous operators on $H(\zeta)$. The kernel of the function $A \to \phi(A)^{\hat{}}(\zeta)$ on \mathscr{A} contains the ideal $[\zeta]$. There is thus a functional ϕ_{ζ} of $\Psi_{\zeta}(\mathscr{A})$ such that $\phi_{\zeta}(\Psi_{\zeta}(A)) = \phi(A)^{\hat{}}(\zeta)$ for every A. Since $\phi(A)^{\hat{}}(\zeta)$ is a pure state of \mathscr{A} (corollary, Theorem 4.3), the functional ϕ_{ζ} is a pure state of $\Psi_{\zeta}(\mathscr{A})$. The pure state space of $\Psi_{\zeta}(\mathscr{A})$ is equal to the vector space of $\Psi_{\zeta}(\mathscr{A})$ (cf. [2, 3.4.1] due to [3, 4.1] due to [3, 4.1] of [4, 4] such that

$$|\phi_{\zeta}(\Psi_{\zeta}(A_j)) - (\Psi_{\zeta}(A_j)x_{\zeta}, x_{\zeta})| < 1$$

for j=1, 2, ..., m. There is an abelian projection E_{ζ} in $\mathscr A$ such that

$$(\Psi_{\zeta}(A)x_{\zeta}, x_{\zeta}) = \tau_{E_{\zeta}}(A)^{\hat{}}(\zeta)$$

for every A in \mathcal{A} . By the same reasoning as Theorem 5.1 we obtain an abelian projection E in \mathcal{A} of central support 1 such that

$$\|\phi(A_j)-\tau_E(A_j)\|<1$$

for j=1, 2, ..., m. This means that $\phi \in V(\mathscr{A})$. Therefore, $P(\mathscr{A}) \subseteq V(\mathscr{A})$. This completes the proof.

Let \mathscr{A} be a type I von Neumann algebra with center \mathscr{Z} . The uniformly closed *-subalgebra of \mathscr{A} generated by the abelian projections of \mathscr{A} is a two-sided ideal I_a in \mathscr{A} [16]. If $A \in I_a^+$, there is a sequence $\{A_n\}$ of positive central elements and a sequence $\{E_n\}$ of orthogonal abelian projections such that

- $(1) A_1 \geqq A_2 \geqq \cdots;$
- (2) $\lim A_n = 0$ (uniformly);
- (3) the central support of E_n has Gelfand transform equal to the characteristic function of the support for the Gelfand transform of A_n for each $n=1, 2, \ldots$;
 - (4) $A = \sum A_n E_n$; and
 - (5) the sequence $\{A_n\}$ is uniquely determined.

The sum $\sum A_n E_n$ is called a spectral decomposition of A.

Let \mathscr{T} be the trace class of \mathscr{A} and let Tr be the canonical trace of \mathscr{A} (§4). For each A in \mathscr{T} define the bounded module homomorphism Φ_A of I_a into \mathscr{Z} by $\Phi_A(B) = \operatorname{Tr}(AB)$. Then if \mathscr{T} is given the norm

$$||A||_1 = ||\operatorname{Tr}((A^*A)^{1/2})||,$$

the function $A \to \Phi_A$ defines an order preserving isometric isomorphism of the \mathscr{Z} -module \mathscr{T} onto the set of all bounded module homomorphisms of I_a into \mathscr{Z} [9, §4].

THEOREM 5.3. Let \mathcal{A} be a type I von Neumann algebra. Let I_a be the closed two-sided ideal of \mathcal{A} generated by the abelian projections of \mathcal{A} . The vector state space $V(\mathcal{A})$ of the module \mathcal{A} consists of the set of all states of the module \mathcal{A} of the form

$$C\phi + (1-C)\tau_E$$

where C is a central element of $\mathscr A$ with $0 \le C \le 1$, ψ is a state of the module $\mathscr A$ such that $C\psi$ vanishes on I_a and E is a maximal abelian projection of $\mathscr A$.

Proof. First let ϕ be an element of $V(\mathscr{A})$; set $\phi \mid I_a = \theta_1$. There is a positive element B in the trace class of \mathscr{A} such that $\theta_1(A) = \operatorname{Tr}(AB)$ for every A in I_a . Let $\theta(A) = \operatorname{Tr}(AB)$ for every A in \mathscr{A} . We show that the functional $\phi - \theta$ is positive. Let $A \in \mathscr{A}^+$. There is a monotonely increasing net $\{A_n\}$ in I_a^+ which converges strongly to A [1, I, §3, Theorem 2, Corollary 5] because I_a is strongly dense in \mathscr{A} . Let x be a vector in the Hilbert space of \mathscr{A} . We have that

$$(\phi(A)x, x) - (\theta(A_n)x, x) \ge (\phi(A_n)x, x) - (\theta(A_n)x, x) = 0$$

for every A_n . Thus

$$(\phi(A)x, x) - (\theta(A)x, x) = \lim_{n} ((\phi(A)x, x) - (\theta(A_n)x, x)) \ge 0.$$

This proves $\phi - \theta$ is a positive functional of the module \mathscr{A} . We also have that $\phi(A) - \theta(A) = 0$ for every $A \in I_a$.

Now let $B = \sum B_i E_i$ be a spectral decomposition for B. Here $\{E_i\}$ is a sequence of orthogonal abelian projections with $E_1 > E_2 > \cdots$; $\{B_i\}$ is a decreasing sequence of positive central elements with $\lim B_n = 0$ (uniformly); and the support of each B_i is equal to the central support of E_i . There is a set of mutually orthogonal central projections $\{P_n\}$ of sum 1 such that for each P_n the series $\sum \{P_n B_i \mid i=1,2,\ldots\}$ converges uniformly [9, Theorem 4.1]. Let n be fixed and let X_n be the set of ζ in the spectrum Z of the center of $\mathscr A$ such that $P_n \cap (\zeta) = 1$. For $\zeta \in X_n$ let Ψ_{ζ} be an irreducible representation of $\mathscr A$ with kernel $[\zeta]$ on a Hilbert space $H(\zeta)$. Let ϕ_{ζ} be the positive functional on $\Psi_{\zeta}(\mathscr A) = \mathscr A(\zeta)$ given by $\phi_{\zeta}(A(\zeta)) = \phi(A) \cap (\zeta)$. Here $\Psi_{\zeta}(A) = A(\zeta)$. Since every functional f having the form $f(A(\zeta)) = \tau_F(A) \cap (\zeta)$, where f is an abelian projection of $\mathscr A$ of central support 1, is a vector state of $\mathscr A(\zeta)$, the functional ϕ_{ζ} is in the vector state space of $\mathscr A(\zeta)$. By Glimm's theorem [3, Theorem 2], there is an α_{ζ} in the interval [0, 1], a state g_{ζ} of $\mathscr A(\zeta)$ vanishing on the completely continuous operators of $H(\zeta)$, and a unit vector x_{ζ} in $H(\zeta)$ such that

$$\phi_t = \alpha_t g_t + (1 - \alpha_t) w_{x_t}.$$

Now we have that

$$\theta(A)^{\wedge}(\zeta) = \left(\sum B_{i}\tau_{E_{i}}(A)\right)^{\wedge}(\zeta) = \sum B_{i}^{\wedge}(\zeta)\tau_{E_{i}}(A)^{\wedge}(\zeta)$$

by the uniform convergence of $\sum_i B_i P_n$. Since $\Psi_{\zeta}(I_a)$ is precisely the ideal of completely continuous operators on $H(\zeta)$, we must have that

$$(1-\alpha_{\zeta})w_{x_{\zeta}}(A(\zeta)) = \sum B_{i}^{\wedge}(\zeta)\tau_{E_{i}}(A)^{\wedge}(\zeta)$$

for each A in I_a . For each E_i there is a unit vector y_i in $H(\zeta)$ such that

$$B_i^{\wedge}(\zeta)\tau_{E_i}(A)^{\wedge}(\zeta) = B_i^{\wedge}(\zeta)(A(\zeta)y_i, y_i).$$

Indeed, $E_i(\zeta)$ is a projection on $H(\zeta)$ of dimension not exceeding 1. Therefore, we have that

$$(1-\alpha_{\zeta})w_{xr}(A(\zeta)) = B_1^{\wedge}(\zeta)\tau_{E_1}(A)^{\wedge}(\zeta)$$

for every A in I_a . Then $B_2(\zeta)$, $B_3(\zeta)$, ... vanish. Because ζ in X_n is arbitrary, we conclude that $0 = B_2 P_n = B_3 P_n = \cdots$ and thus that $BP_n = (B_1 E_1) P_n$. Because P_n is arbitrary, we find that B_2 , B_3 , ... vanish. Thus $B = B_1 E_1$ and $\theta(A) = B_1 \tau_{E_1}(A)$ for every A in \mathscr{A} . Since the support of B_1 is equal to that of E_1 , we may assume $E = E_1$ is a maximal abelian projection and still retain the formula $B_1 \tau_E(A) = \theta(A)$.

There is a sequence $\{Q_n\}$ of orthogonal central projections of sum equal to the support Q of $C = \phi(1) - \theta(1)$ such that for each Q_n there is a positive central element D_n with $D_nQ_n = D_n$ and $D_nC = Q_n$. The sequence $\{\|D_n(\phi(A) - \theta(A))\|\}$ is bounded above by $\|A\|$ for each A in $\mathscr A$ since $\phi - \theta$ is a positive functional of the module $\mathscr A$. Set $\psi_1(A) = \sum_n D_n(\phi(A) - \theta(A))$ for each A in $\mathscr A$. Then ψ is a positive

functional of the module \mathscr{A} , with the property $\psi_1(1) = Q$. We extend ψ_1 to a state ψ on the module \mathscr{A} by setting $\psi = \psi_1 + \psi_2$ where ψ_2 is a positive functional of the module \mathscr{A} with $\psi_2(1) = 1 - Q$.

We show that $C\psi + B_1\tau_E = \phi$. For each Q_n we have that

$$O_n(C\psi(A) + B_1\tau_E(A)) = O_n(\phi(A) - \theta(A) + \theta(A)) = O_n\phi(A)$$

for every A in \mathcal{A} . Also

$$(1-Q)(C\psi(A)+B_1\tau_E(A))=(1-Q)\theta(A)=(1-Q)\phi(A).$$

So $C\psi + B_1\tau_E = \phi$. Since both ψ and τ_E are states, we have that $C + B_1 = 1$. This completes the first part of the proof.

Conversely, let ϕ be a state of the module $\mathscr A$ of the form

$$\phi = C\psi + (1-C)\tau_E,$$

where C is a central element of \mathscr{A} with $0 \le C \le 1$, ψ is a state of the module \mathscr{A} such that $C\psi$ vanishes on I_a , and E is an abelian projection of central support 1. Let A_1, A_2, \ldots, A_n be elements of \mathscr{A} . Let ζ be a maximal ideal of the center of \mathscr{A} and let Ψ_{ζ} be an irreducible representation with kernel $[\zeta]$ of \mathscr{A} on the Hilbert space $H(\zeta)$. Let $\Psi_{\zeta}(\mathscr{A}) = \mathscr{A}(\zeta)$ and $\Psi_{\zeta}(A) = A(\zeta)$. The relation

$$\phi_{\zeta}(A(\zeta)) = \phi(A)^{\hat{}}(\zeta)$$

defines a functional in the vector state space of $\mathscr{A}(\zeta)$ [3, Theorem 2] since $\Psi_{\zeta}(I_a)$ is the ideal of completely continuous operators on $H(\zeta)$. There is a unit vector x_{ζ} in $H(\zeta)$ such that

$$|\phi_{\zeta}(A_{j}(\zeta)) - (A_{j}(\zeta)x_{\zeta}, x_{\zeta})| < 1$$

for j=1, 2, ..., n. But there is an abelian projection E_{ζ} in A such that

$$(A(\zeta)x_t, x_t) = \tau_{E_t}(A)^{\hat{}}(\zeta)$$

for every A in \mathcal{A} . By the same procedure as employed in Theorem 5.2, we obtain an abelian projection F of central support 1 in \mathcal{A} such that

$$|\phi_{\zeta}(A_{j}(\zeta)) - \tau_{F}(A_{j})^{\wedge}(\zeta)| < 1$$

for every j=1, 2, ..., n and every maximal ideal ζ . So

$$\|\phi(A_i) - \tau_F(A_i)\| < 1$$

for j=1, 2, ..., n. Thus ϕ is in the vector state space of the module \mathscr{A} . Q.E.D. In a type I algebra every state is the pointwise limit of σ -weakly continuous states.

THEOREM 5.4. Let \mathscr{A} be a type I von Neumann algebra. Every state of the module \mathscr{A} is the pointwise limit of normal states of the module \mathscr{A} .

Proof. Let ϕ be a state of \mathscr{A} . Let θ_1 be the restriction of ϕ to I_a . There is a positive element B of the trace class of \mathscr{A} such that $\theta_1(A) = \operatorname{Tr}(BA)$ for every A in I_a . Let

 $\theta(A) = \operatorname{Tr}(BA)$ for every A in \mathscr{A} . Then $\phi - \theta = \psi_1$ is a positive functional on the module \mathscr{A} which vanishes on I_a (cf. proof of Theorem 5.3). Let the central projection Q be the support of $C = \psi_1(1)$. There is a positive functional ψ of the module \mathscr{A} such that $\psi(1) = Q$ and such that $C\psi = \psi_1$. Now let A_1, A_2, \ldots, A_n be elements of \mathscr{A} . The restriction of ψ to the $\mathscr{L}Q$ -module $\mathscr{A}Q$ vanishes on the closed two-sided ideal I_aQ generated by the abelian projections of $\mathscr{A}Q$. There is an abelian projection E in $\mathscr{A}Q$ with central support Q such that

$$\|\psi(AQ) - \tau_E(A_jQ)\| < (\|C\| + 1)^{-1}$$

for j=1, 2, ..., n (Theorem 5.3). This means that

$$\|\psi_1(A_j) - C\tau_E(A_j)\| < 1$$

for j=1, 2, ..., n. The functional

$$A \rightarrow C\tau_E(A) + \operatorname{Tr}(BA)$$

is a σ -weakly continuous positive functional of the module \mathcal{A} . We have that

$$C\tau_E(1) + \text{Tr}(B) = \phi(1) - \theta(1) + \theta(1) = \phi(1) = 1.$$

Also

$$\|\phi(A_i) - C\tau_E(A_i) - \operatorname{Tr}(BA_i)\| < 1$$

for j=1, 2, ..., n. Thus the state ϕ is the pointwise limit of positive σ -weakly continuous states. Q.E.D.

BIBLIOGRAPHY

- 1. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1957.
- 2. ——, Les C*-algèbres et leur représentations, Gauthier-Villars, Paris, 1964.
- 3. J. Glimm, A Stone-Weierstrass theorem for C*-algebras, Ann. of Math. (2) 72 (1960), 216-244.
 - 4. —, Type I C*-algebras, Ann. of Math. (2) 73 (1961), 572-612.
- 5. R. Godement, Sur la théorie des représentations unitaires, Ann. of Math. (2) 53 (1951), 68-124.
 - 6. M. Goldman, Structure of AW*-algebras of type I, Duke Math. J. 23 (1956), 23-34.
- 7. H. Halpern, The maximal GCR ideal of an AW*-algebra, Proc. Amer. Math. Soc. 17 (1966), 906-914.
- 8. ———, An integral representation of a normal functional on a von Neumann algebra, Trans. Amer. Math. Soc. 125 (1966), 32-46.
- 9. —, A spectral decomposition for self-adjoint elements in the maximal GCR ideal of a von Neumann algebra with applications to noncommutative integration theory, Trans. Amer. Math. Soc. 133 (1968), 281-306.
- 10. ——, Commutators in properly infinite von Neumann algebra, Trans. Amer. Math. Soc. 139 (1969), 55-73.
- 11. ——, Proper values for the elements of the maximal GCR ideal of a von Neumann algebra, (to appear).
- 12. ——, Module homomorphisms of a von Neumann algebra into its center, Trans. Amer. Math. Soc. 140 (1969), 183-193.

- 13. R. V. Kadison, Irreducible operator algebras, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 273-276.
- 14. I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951), 219-255.
 - 15. ——, A theorem on rings of operators, Pacific J. Math. 1 (1951), 227-232.
 - 16. —, Algebras of type I, Ann. of Math. (2) 56 (1952), 460-472.
 - 17. ——, Modules over operator algebras, Amer. J. Math. 75 (1953), 839-858.
 - 18. J. Kelly and I. Namioka, Linear topological spaces, Van Nostrand, Princeton, N. J., 1963.
- 19. M. Nakai, Some expectations in AW*-algebras, Proc. Japan Acad. Sci. 34 (1958), 411-416.
- 20. J. von Neumann, On rings of operators. Reduction theory, Ann. of Math. (2) 50 (1949), 401-485.
 - 21. C. Rickart, General theory of Banach algebras, Van Nostrand, Princeton, N. J., 1960.
- 22. S. Sakai, *Theory of W*-algebras* (mimeographed notes), Yale Univ., New Haven, Conn., 1962.
- 23. I. E. Segal, *Decomposition of operator algebras*. I, II, Mem. Amer. Math. Soc. No. 9 (1951), 67 pp. and 66 pp.
- 24. M. Takesaki, On the Hahn-Banach type theorem and the Jordan decomposition of module linear mappings over some operator algebras, Kōdai Math. Sem. Rep. 12 (1960), 1-10.
- 25. J. Taylor, The Tomita decomposition of rings of operators, Trans. Amer. Math. Soc. 113 (1964), 30-39.
- 26. M. Tomita, Representation of operator algebras, Math. J. Okayama Univ. 3 (1954), 142-173.
 - 27. ——, Spectral theory of operator algebras. I, Math. J. Okayama Univ. 9 (1959), 63-98.
 - 28. H. Widom, Embedding in algebras of type I, Duke Math. J. 23 (1956), 309-324.

ILLINOIS INSTITUTE OF TECHNOLOGY, CHICAGO, ILLINOIS